An Improved Pseudopolynomial Time Algorithm for Subset Sum

Jiayi Lian (joint work with Lin Chen, Yuchen Mao, and Guochuan Zhang)

Zhejiang University

September 19, 2025

Problems

- Subset Sum
 - ightharpoonup Given a multi-set X of n positive integers and a target t,
 - ▶ asks for a subset $Y \subseteq X$ with maximum $\Sigma(Y)$ that does not exceed t.

$$\Sigma(Y) = \sum_{y \in Y} y$$

NP-hard.

Current Results

Table 1: Pseudopolynomial Time Algorithm for Subset Sum

Running Time	Reference
O(nt)	[Bellman '57]
$O(nt/\log t)$	[Pisinger '03]
$\widetilde{O}(\sqrt{n}t)$	[Koiliaris & Xu '17]
$\widetilde{O}(n+t)$	[Bringmann '17][Jin & Wu '19]
O(nw)	[Pisinger '99]
$\widetilde{O}(n+w^{5/3})$	[Polak, Rohwedder& Węgrzycki '21]
$\widetilde{O}(n+w^{3/2})$	[Chen, Lian, Mao & Zhang '24]
Conditional Lower Bound: $t^{1-\epsilon} \cdot n^{O(1)}$ [Abboud et al. '22]	

Current Results

Table 1: Pseudopolynomial Time Algorithm for Subset Sum

Running Time	Reference	
O(nt)	[Bellman '57]	
$O(nt/\log t)$	[Pisinger '03]	
$\widetilde{O}(\sqrt{n}t)$	[Koiliaris & Xu '17]	
$\widetilde{O}(n+t)$	[Bringmann '17][Jin & Wu '19]	
O(nw)	[Pisinger '99]	
$\widetilde{O}(n+w^{5/3})$	[Polak, Rohwedder& Węgrzycki '21]	
$\widetilde{O}(n+w^{3/2})$	[Chen, Lian, Mao & Zhang '24]	
$\widetilde{O}(n + \sqrt{wt})$	this talk	
Conditional Lower Bound: $t^{1-\epsilon} \cdot n^{O(1)}$ [Abboud et al. '22]		

• Compute $S(X) := \{\Sigma(Y) : Y \subseteq X\}$

$$\Sigma(Y) = \Sigma_{y \in Y}$$

• Optimaze: find $s \in \mathcal{S}(X)$ such that s is maximum but $s \leqslant t$.

• Compute $S(X) := \{\Sigma(Y) : Y \subseteq X\}$

$$\Sigma(Y) = \Sigma_{y \in Y} Y$$

• Optimaze: find $s \in \mathcal{S}(X)$ such that s is maximum but $s \leqslant t$.

Sumset:
$$A + B = \{a + b : a \in A \cup \{0\}, b \in B \cup \{0\}\}.$$

Let
$$X = \{x_1, ..., x_n\}$$
, $S(X) = \{x_1\} + ... + \{x_n\}$.

• Compute $S(X) := \{\Sigma(Y) : Y \subseteq X\}$

- $\Sigma(Y) = \Sigma_{y \in Y} y$
- Optimaze: find $s \in \mathcal{S}(X)$ such that s is maximum but $s \leqslant t$.

Sumset: $A + B = \{a + b : a \in A \cup \{0\}, b \in B \cup \{0\}\}.$

Let $X = \{x_1, ..., x_n\}$, $S(X) = \{x_1\} + ... + \{x_n\}$.

$$S(X) = \{x_1\} + \dots + \{x_n\}.$$

Sparse convolution: compute A + B in O(|A + B|) time.

$$|\mathcal{S}(X)|$$
 can be $O(\Sigma x_i) = O(nw)$ or $O(t)$. ($w = \max x_i$)

Compute $S(X) := \{ \Sigma(Y) : Y \subseteq X \}$. For each layer:

- Sparse Case: $\Sigma |\mathcal{S}(X_i)|$ is small, compute by sparse convolution;
- Dense Case: t is in S(X) by additive combinatoric. [Bringmann & Wellnitz '21] [Galil & Margalit '91]

Additive combinatorics results from [Szemerédi & Vu '05]

Corollary

There exists a constant c such that: Let $A_1,...,A_\ell$ be subsets of [1,u]. If $\Sigma_{i=1}^\ell |A_i| \geqslant cu \log u$, then $A_1 + \cdots + A_\ell$ contains an arithmetic progression of length at least u.

• Common difference
$$\Delta \leqslant \frac{\sum_{i=1}^{\ell} \max(A_i)}{u}$$
.

Partition X to G, R, D such that

- $|G| \leqslant k, |R| \leqslant k$,
- R, D divisible by some integer d.
- For any $b \in [1, k]$, $\mathcal{S}_{R/d} \mod b = [1, b-1]$.

If subset $P \subseteq D/d$ such that S_P has an AP with common difference $\Delta \leqslant k$,

 S_P

 $\mathcal{S}_{R/d}$

If subset $P \subseteq D/d$ such that S_P has an AP with common difference $\Delta \leqslant k$,

$$\mathcal{S}_{R/d \bigcup D/d}$$

We have

$$[\sigma(P) + \sigma(R), \sigma(D) - \sigma(P) - \sigma(R)] \subseteq \mathcal{S}_{R/d \bigcup D/d}.$$

If
$$\sigma(P) + \sigma(R) \leqslant (t - \Sigma(G))/d$$
,

$$t \in \mathcal{S}(X) \iff t \in d \cdot [\sigma(P) + \sigma(R), \sigma(D) - \sigma(P) - \sigma(R)] + \mathcal{S}_G.$$

To make
$$\Delta = \frac{\sum_{i=1}^{\ell} \max(\mathcal{S}(X_i))}{u} \leqslant k$$
 (also $\sigma(P) + \sigma(R) \leqslant t - \sigma(G)$),

To make
$$\Delta = \frac{\sum_{i=1}^{\ell} \max(\mathcal{S}(X_i))}{u} \leqslant k$$
 (also $\sigma(P) + \sigma(R) \leqslant t - \sigma(G)$),

• By Color Coding, $\Sigma_{i=1}^{\ell} \max(\mathcal{S}(X_i)) = \widetilde{\Theta}(t)$

To make
$$\Delta = \frac{\sum_{i=1}^{\ell} \max(\mathcal{S}(X_i))}{u} \leqslant k$$
 (also $\sigma(P) + \sigma(R) \leqslant t - \sigma(G)$),

- By Color Coding, $\Sigma_{i=1}^{\ell} \max(\mathcal{S}(X_i)) = \widetilde{\Theta}(t)$
- Running time
 - lacktriangle Compute \mathcal{S}_G and \mathcal{S}_R : $\widetilde{O}(|G|\cdot w)=\widetilde{O}(wk)$
 - lacktriangledown Compute $\mathcal{S}_{D/d}$ when sparse: $\widetilde{O}(\Sigma_{i=1}^{\ell}|\mathcal{S}(X_i)|)=\widetilde{O}(u)$

To make
$$\Delta = \frac{\sum_{i=1}^{\ell} \max(\mathcal{S}(X_i))}{u} \leqslant k$$
 (also $\sigma(P) + \sigma(R) \leqslant t - \sigma(G)$),

- By Color Coding, $\Sigma_{i=1}^{\ell} \max(\mathcal{S}(X_i)) = \widetilde{\Theta}(t)$
- Running time
 - ▶ Compute S_G and S_R : $\widetilde{O}(|G| \cdot w) = \widetilde{O}(wk)$
 - lacktriangle Compute $\mathcal{S}_{D/d}$ when sparse: $\widetilde{O}(\Sigma_{i=1}^{\ell}|\mathcal{S}(X_i)|)=\widetilde{O}(u)$
- Minimize: $wk = u = \sqrt{wt}$

End of Story?

Challenges

Recall $S(X_1),...,S(X_\ell)$ should be subsets of [1,u]. Then if $\Sigma_{i=1}^\ell |S(X_i)| \geqslant cu \log u$, there is an AP.

Challenges

Recall $S(X_1),...,S(X_\ell)$ should be subsets of [1,u]. Then if $\Sigma_{i=1}^{\ell}|S(X_i)|\geqslant cu\log u$, there is an AP.

In high layer, $\max(\mathcal{S}(X_i)) \geqslant \sqrt{wt}$.

Probability Bounds

From Bernstein's inequality:

Corollary

Let A be a multi-set of k non-negative integers. Let $A^*\subseteq A$. Let B be a multi-set of s integers randomly sampled from A without replacement. For any $c\geqslant 1$,

$$\mathbf{Pr}\left(\left|\Sigma(B\cap A^*) - \frac{s}{k}\Sigma(A^*)\right| > 4c\sqrt{|A^*|}\max(A^*)\right) \leqslant \exp(-c).$$

Probability Bounds

- Suppose $Y \subseteq X$ that $\Sigma(Y) = t$. Let $Y_j = Y \cap [2^j, 2^{j+1}]$.
- Randomly permute X. In layer h, X_i is a set of 2^h integers randomly sampled from X without replacement.
- With high probability,

$$\left| \Sigma(X_i \cap Y_j) - \frac{2^h}{n} \Sigma(Y_j) \right| \leqslant c\sqrt{|Y_j|} \max(Y_j) \leqslant c\sqrt{t \cdot 2^j} \leqslant c\sqrt{wt}$$

With high probability,

$$\left| \Sigma(X_i \cap Y) - \frac{2^h}{n} \Sigma(Y) \right| \leqslant \sum_{i=1}^{\log w} c \sqrt{|Y_j|} \max(Y_j) \leqslant c \log w \sqrt{wt}$$

In layer h, we can just compute

$$S(X_j) \bigcap \left[\frac{2^h}{n} t - c \log w \sqrt{wt}, \frac{2^h}{n} t + c \log w \sqrt{wt} \right].$$

Corollary

There exists a constant c such that: Let $A_1,...,A_\ell$ be subsets of [C,C+u]. If $\Sigma_{i=1}^\ell|A_i|\geqslant cu\log u$, then $A_1+\cdots+A_\ell$ contains an arithmetic progression of length at least u.

Open Questions

- Does Subset Sum (or Partition) have an exact algorithm in time $\widetilde{O}(n+w)$?
- Does Partition admit a deterministic approximation scheme in time $\widetilde{O}(n+1/\varepsilon)$?
- Does Subset Sum admit a deterministic weak approximation scheme in time $\widetilde{O}(n+1/\varepsilon)$?

Thank you!