Approximating Partition in Near-Linear Time

Jiayi Lian (joint work with Lin Chen, Yuchen Mao, and Guochuan Zhang)

Zhejiang University

March 26, 2024

Problems

- Subset Sum
 - ightharpoonup Given a multi-set X of n positive integers and a target t,
 - ▶ asks for a subset $Y \subseteq X$ with maximum $\Sigma(Y)$ that does not exceed t.
- Partition
 - $t = \Sigma(X)/2$

$$\Sigma(Y) = \sum_{y \in Y} y$$

Both are NP-hard.

Approximation Scheme

• Standard $(1-\varepsilon)$ -Approximation for Subset Sum

$$(1 - \varepsilon)\Sigma(Y^*) \leqslant \Sigma(Y) \leqslant t.$$

- [Kellerer et al. '97] $\widetilde{O}(n+1/\varepsilon^2)$
- ► [Bringmann & Nakos '21] proved it is the best possible assuming the (min, +)-convolution conjecture.

Approximation Scheme

• Standard $(1-\varepsilon)$ -Approximation for Subset Sum

$$(1 - \varepsilon)\Sigma(Y^*) \leqslant \Sigma(Y) \leqslant t.$$

- [Kellerer et al. '97] $\widetilde{O}(n+1/\varepsilon^2)$
- ► [Bringmann & Nakos '21] proved it is the best possible assuming the (min, +)-convolution conjecture.
- $(1-\varepsilon)$ -Approximation for Partition
 - ▶ [Deng et al. '23 & Wu and Chen'22] $\widetilde{O}(n+1/\varepsilon^{5/4})$
 - ▶ [Abboud et al. '22] Conditional LB: $poly(n)/\varepsilon^{1-o(1)}$.

Current Results

Table 1: Approximation schemes for Partition

Running Time		Reference	
$\widetilde{O}(n+1/\varepsilon^2)$	Deterministic	[Gens & Levner '80]	
$\widetilde{O}(n+1/\varepsilon^{5/3})$	Randomized	[Mucha, Węgrzycki & Włodarczyk '19]	
$\widetilde{O}(n+1/\varepsilon^{3/2})$	Deterministic	[Bringmann & Nakos '21]	
$\widetilde{O}(n+1/\varepsilon^{5/4})$	Deterministic	[Deng, Jin & Mao '23][Wu & Chen '22]	
Conditional Lower Bound: $\mathrm{poly}(n)/arepsilon^{1-o(1)}$ [Abboud et al. '22]			

Current Results

Table 1: Approximation schemes for Partition

Running Time		Reference	
$\widetilde{O}(n+1/\varepsilon^2)$	Deterministic	[Gens & Levner '80]	
$\widetilde{O}(n+1/\varepsilon^{5/3})$	Randomized	[Mucha, Węgrzycki & Włodarczyk 19]	
$\widetilde{O}(n+1/\varepsilon^{3/2})$	Deterministic	[Bringmann & Nakos '21]	
$\widetilde{O}(n+1/\varepsilon^{5/4})$	Deterministic	[Deng, Jin & Mao '23][Wu & Chen '22]	
$\widetilde{O}(n+1/arepsilon)$	Randomized	this talk	
Conditional Lower Bound: $\mathrm{poly}(n)/arepsilon^{1-o(1)}$ [Abboud et al. '22]			

• Compute
$$S_X := \{\Sigma(Y) : Y \subseteq X\}$$

$$\Sigma(Y) = \Sigma_{y \in Y} y$$

• Optimaze: find $s \in S_X$ such that s is maximum but $s \leqslant t$.

• Compute $S_X := \{\Sigma(Y) : Y \subseteq X\}$

$$\Sigma(Y) = \Sigma_{y \in Y} y$$

• Optimaze: find $s \in S_X$ such that s is maximum but $s \leqslant t$.

Sumset: $A + B = \{a + b : a \in A \cup \{0\}, b \in B \cup \{0\}\}.$

Let
$$X = \{x_1, ..., x_n\}$$
, $S_X = \{x_1\} + ... + \{x_n\}$.

• Compute $S_X := \{\Sigma(Y) : Y \subseteq X\}$

$$\Sigma(Y) = \Sigma_{y \in Y} y$$

• Optimaze: find $s \in \mathcal{S}_X$ such that s is maximum but $s \leqslant t$.

Sumset: $A + B = \{a + b : a \in A \cup \{0\}, b \in B \cup \{0\}\}.$

Let $X = \{x_1, ..., x_n\}$, $S_X = \{x_1\} + ... + \{x_n\}$.

$$S_X = \{x_1\} + \dots + \{x_n\}.$$

Sparse convolution: compute A + B in O(|A + B|) time.

 $|\mathcal{S}_X|$ can be $O(\Sigma x_i) = O(nw)$ or O(t) by cutting. ($w = \max x_i$)

Compute $S_X := \{\Sigma(Y) : Y \subseteq X\}$. For each level:

- if $\Sigma |A_i| \leqslant \widetilde{\Theta}(u)$, compute it by sparse convolution;
- else, we show t is approximately in \mathcal{S}_X by additive combinatoric.

Main Questions

• How to make $u=O(\frac{1}{\varepsilon})$? So sparse convolution can be done in $\widetilde{O}(n+\frac{1}{\varepsilon})$.

• How to use additive combinatoric? Then we can say t is approximately in S_X .

Main Questions

- How to make $u=O(\frac{1}{\varepsilon})$? So sparse convolution can be done in $\widetilde{O}(n+\frac{1}{\varepsilon})$.
 - make $\max x_i = O(\frac{1}{\varepsilon})$,
 - scale and round during the tree.
- How to use additive combinatoric? Then we can say t is approximately in \mathcal{S}_X .

Scaling, Rounding, Grouping

Key point: for each element, we can round ε fraction of it.

Scaling, Rounding, Grouping

Key point: for each element, we can round ε fraction of it.

Original
$$0 \qquad \max x_i \qquad t$$
 scale and round
$$\frac{\mathsf{L}_{-1}}{1/\varepsilon} \qquad 1/\varepsilon^2 \qquad t = 1/\varepsilon^2$$

Scaling, Rounding, Grouping

Key point: for each element, we can round ε fraction of it.

This can be done approximately in $O(1/\varepsilon)$.

Scaling, Rounding, Grouping

Key point: for each element, we can round ε fraction of it.

We can reduce to this problem:

- $X \subseteq [1/\varepsilon, 2/\varepsilon]$,
- $t \in [1/\varepsilon, 1/\varepsilon^2]$,
- $t \leqslant \Sigma(X)/2$ (Otherwise, we just let $t = \Sigma(X)/2$),
- BUT now, we have to compute $S_X[0,t]$
 - ▶ If it's always sparse, we actually compute $S_X[0,t]$,
 - NOW for the dense part:

Additive Combinatorics

[Szemerédi & Vu '05]

There exists a constant c such that the following holds. Let $A_1,...,A_\ell$ be subsets of [1,u] of size at least |A|. If $\ell|A|\geqslant cu$, then $A_1+\cdots+A_\ell$ contains an arithmetic progression of length at least u.

Additive Combinatorics

[Szemerédi & Vu '05]

There exists a constant c such that the following holds. Let $A_1,...,A_\ell$ be subsets of [1,u] of size at least |A|. If $\ell|A|\geqslant cu$, then $A_1+\cdots+A_\ell$ contains an arithmetic progression of length at least u.

Corollary

There exists a constant c such that: Let $A_1,...,A_\ell$ be subsets of [1,u]. If $\Sigma_{i=1}^\ell |A_i| \geqslant cu \log u$, then $A_1 + \cdots + A_\ell$ contains an arithmetic progression of length at least u.

• Common difference $\Delta \leqslant \frac{\ell \cdot u}{u} \leqslant \ell$.

What we want to do?

If
$$s_1 \leqslant t \leqslant s_n$$
 and $s_i - s_{i-1} \leqslant O(\varepsilon t)$,

We can say that $t \in S_X$ approximately.

What we want to do?

If
$$s_1 \leqslant t \leqslant s_n$$
 and $s_i - s_{i-1} \leqslant O(\varepsilon t)$,

We can say that $t \in S_X$ approximately.

However, If
$$\sum_{i=1}^{\ell} |A_i| \geqslant cu \log u$$
.

Just dense
$$0$$
 $\Sigma(\max A_i)$

$$s_1 = ?$$
 $s_n = ?$ $s_i - s_{i-1} = \Delta = O(\ell),$ $s_n - s_i \geqslant u$

If $\sum_{i=1}^{\ell} |A_i| \geqslant 4cu \log u$, we can choose at most $\frac{\ell}{4}$ sets that have an arithmetic progression. (We choose ones with the smallest maximum element)

Use
$$\ell/4$$
 sets 0 $\frac{1}{4}\Sigma(\max A_i)$ $\Sigma(\max A_i)$

$$s_1 \leqslant s_n = \frac{1}{4} \Sigma(\max A_i), \quad s_i - s_{i-1} = \Delta = O(\ell), \quad s_n - s_i \geqslant u$$

By color-coding, we can let $t = \Theta(\frac{1}{2}\Sigma(\max A_i))$ and $l = O(\varepsilon t)$.

$$s_1 \leqslant \frac{t}{2}, \qquad s_n \geqslant t, \qquad s_i - s_{i-1} \leqslant O(\varepsilon t)$$

Approximating S[t/2, t]

If $A_1 + ... + A_\ell$ has a sequence $s_1, ..., s_n$ that:

$$s_1 \leqslant \frac{t}{2}, \quad s_n \geqslant t, \quad s_i - s_{i-1} \leqslant O(\varepsilon t).$$

Then

$$\widetilde{\mathcal{S}} = \{t/2 + \varepsilon ti : t \in [0, \frac{1}{2\varepsilon}]\}$$

approximates $\mathcal{S}[t/2,t]$ with additive error εt .

Approximating S[t/2, t]

If $A_1 + ... + A_\ell$ has a sequence $s_1, ..., s_n$ that:

$$s_1 \leqslant \frac{t}{2}, \quad s_n \geqslant t, \quad s_i - s_{i-1} \leqslant O(\varepsilon t).$$

Then

$$\widetilde{\mathcal{S}} = \{t/2 + \varepsilon ti : t \in [0, \frac{1}{2\varepsilon}]\}$$

approximates S[t/2, t] with additive error εt .

For S[1, t/2], again, we use grouping:

Compute S[1,2], S[2,4], S[4,8]... and merge. ($\log(1/\varepsilon)$ times)

- Let $Y \subseteq X$ that $\Sigma(Y) = t$. We have $X \in [1/\varepsilon, 2/\varepsilon]$.
- $|Y| \leqslant \varepsilon t$. Let |Y| = k.
- If $t \ll \Sigma(X)$, Y just uses a few elements in X.

- Let $Y \subseteq X$ that $\Sigma(Y) = t$. We have $X \in [1/\varepsilon, 2/\varepsilon]$.
- $|Y| \leqslant \varepsilon t$. Let |Y| = k.
- If $t \ll \Sigma(X)$, Y just uses a few elements in X.
- Color Coding: [Bringmann '17]
 - ▶ Randomly partition X to $\widetilde{\Theta}(k)$ subset.
 - ▶ With high probability, $|Y \cap X_i| \leq 1$ for all *i*.

- Let $Y \subseteq X$ that $\Sigma(Y) = t$. We have $X \in [1/\varepsilon, 2/\varepsilon]$.
- $|Y| \leqslant \varepsilon t$. Let |Y| = k.
- If $t \ll \Sigma(X)$, Y just uses a few elements in X.
- Color Coding: [Bringmann '17]
 - ▶ Randomly partition X to $\widetilde{\Theta}(k)$ subset.
 - ▶ With high probability, $|Y \cap X_i| \leq 1$ for all i.
 - With high probability, $\Sigma(Y) \in X_1 + ... + X_{\widetilde{\Theta}(k)}$.

- With high probability, $\Sigma(Y) \in X_1 + ... + X_{\widetilde{\Theta}(k)}$.
- For any $s \in \mathcal{S}_X$, with high probability, $s \in X_1 + ... + X_{\widetilde{\Theta}(k)}$.
- $\Sigma(\max X_i) = \widetilde{\Theta}(k \cdot \frac{1}{\varepsilon}) = \widetilde{\Theta}(t).$
- Common distance $l = O(\varepsilon t)$

Technical Overview

Open Questions

- Does Partition admit a deterministic approximation scheme in time $\widetilde{O}(n+1/\varepsilon)$?
- Does Subset Sum admit a deterministic weak approximation scheme in time $\widetilde{O}(n+1/\varepsilon)$?
- Does Subset Sum (or Partition) have an exact algorithm in time $\widetilde{O}(n+w)$? (w is the maximum element in X.)

Reference

- [1] Amir Abboud et al. "SETH-based Lower Bounds for Subset Sum and Bicriteria Path". In: ACM Transactions on Algorithms 18.1 (Jan. 2022), pp. 1–22. ISSN: 1549-6325, 1549-6333.
- [2] Karl Bringmann. "A Near-Linear Pseudopolynomial Time Algorithm for Subset Sum". In: SODA 2017. Jan. 2017, pp. 1073–1084.
- [3] Karl Bringmann, Nick Fischer, and Vasileios Nakos. "Deterministic and Las Vegas Algorithms for Sparse Nonnegative Convolution". In: <u>SODA 2022</u>. Proceedings. Jan. 2022, pp. 3069–3090.
- [4] Karl Bringmann and Vasileios Nakos. "A Fine-Grained Perspective on Approximating Subset Sum and Partition". In: SODA 2021. Proceedings. Jan. 2021, pp. 1797–1815.
- [5] Karl Bringmann and Vasileios Nakos. "Fast N-Fold Boolean Convolution via Additive Combinatorics", In: ICALP 2021, 2021.
- [6] Mingyang Deng, Ce Jin, and Xiao Mao. "Approximating Knapsack and Partition via Dense Subset Sums". In: SODA 2023, Proceedings. Jan. 2023, pp. 2961–2979.
- [7] Marcin Mucha, Karol Węgrzycki, and Michał Włodarczyk. "A Subquadratic Approximation Scheme for Partition". In: SODA 2019. Proceedings. Jan. 2019, pp. 70–88.
- [8] E. Szemerédi and V. Vu. "Long Arithmetic Progressions in Sumsets: Thresholds and Bounds". In: Journal of the American Mathematical Society 19.1 (Sept. 2005), pp. 119-169. ISSN: 0894-0347, 1088-6834.
- [9] Xiaoyu Wu and Lin Chen. "Improved Approximation Schemes for (Un-)Bounded Subset-Sum and Partition". In: arXiv:2212,02883. Dec. 2022. arXiv: 2212.02883 [cs].

Thank you!