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Problems

® Subset Sum
> Given a multi-set X of n positive integers and a target ¢,

» asks for a subset Y C X with maximum X(Y) that does
not exceed .

e Partition

> =3(X)/2 z(y)zzy

yeyY

e Both are NP-hard.
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Approximation Scheme

e Standard (1 — ¢)-Approximation for Subset Sum
1-e)S(Y)<S(Y) <t

> [Kellerer et al. '97] O(n+ 1/&?)

> [Bringmann & Nakos ‘21] proved it is the best possible
assuming the (min, +)-convolution conjecture.
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Approximation Scheme

e Standard (1 — ¢)-Approximation for Subset Sum
1-e)S(Y)<S(Y) <t

> [Kellerer et al. '97] O(n+ 1/&?)

> [Bringmann & Nakos ‘21] proved it is the best possible
assuming the (min, +)-convolution conjecture.

* (1 —¢)-Approximation for Partition

> [Deng et al. '23 & Wu and Chen'22] 5(n+ 1/e5/%)
> [Abboud et al. '22] Conditional LB: poly(n)/e!~°W,
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Current Results

Table 1: Approximation schemes for Partition

Running Time Reference

O(n+1/e?)  Deterministic [Gens & Levner '80]
O(n+ 1/£%/3) Randomized  [Mucha, Wegrzycki & Wiodarczyk '19]
O(n+1/%/?)  Deterministic [Bringmann & Nakos '21]

O(n+1/e%/%)  Deterministic  [Deng, Jin & Mao '23][Wu & Chen '22]

Conditional Lower Bound: poly(n)/e'~°(")[Abboud et al. '22]
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Current Results

Table 1: Approximation schemes for Partition

Running Time

Reference

O(n+ 1/&?)
O(n+ 1/£%/3)
O(n+1/%/?)  Deterministic
O(n+1/e>/*)  Deterministic

O(n+1/¢)

Deterministic
Randomized

Randomized

[Gens & Levner '80]

[Mucha, Wegrzycki & Wiodarczyk '19]

[Bringmann & Nakos '21]

[Deng, Jin & Mao '23][Wu & Chen '22]

this talk

Conditional Lower Bound: poly(n)/e'~°(")[Abboud et al. '22]
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Basic Idea

e Compute Sy :={X(Y): YC X} (YY) =Xyevy

e Optimaze: find s € Sx such that s is maximum but s < ¢.
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Basic Idea

e Compute Sy :={X(Y): YC X} (YY) =Xyevy

e Optimaze: find s € Sx such that s is maximum but s < ¢.

Sumset: A+ B={a+b:ac AU{0},be BU{0}}.
Let X={z1,....,2,}, Sx={z1} + ... + {z}.
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Basic Idea

e Compute Sy :={X(Y): YC X} (YY) =Xyevy

e Optimaze: find s € Sx such that s is maximum but s < ¢.

Sumset: A+ B={a+b:ac AU{0},be BU{0}}.
Let X={z1,....,2,}, Sx={z1} + ... + {z}.

Star,a2}

PN N

{n}  {m} {zn}

5/19



Basic Idea

Sx={zm}+ ...+ {z,}.
Sparse convolution: compute A + Bin O(|A + B]) time.

|Sx| can be O(Xz;) = O(nw) or O(t) by cutting. (w = max ;)

Starm}

{m} {w} {0}
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Basic Idea

Compute Sx := {3(Y): Y C X}. For each level:
e if £|4;] < O(u), compute it by sparse convolution;

e else, we show t is approximately in Sx by additive
combinatoric.
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Main Questions

* How fo make u = O(é)?

. = 1
So sparse convolution can be done in O(n+ ).
9

* How to use additive combinatoric?

Then we can say ¢ is approximately in Sx.
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Main Questions

* How fo make u = O(é)?

. = 1
So sparse convolution can be done in O(n+ ).
9

1
» make maxz; = O(=),
€

» scale and round during the tree.

* How to use additive combinatoric?

Then we can say ¢ is approximately in Sx.
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Make max z; = O(1/¢)

Scaling, Rounding, Grouping

Key point: for each element, we can round ¢ fraction of it.
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Make max z; = O(1/¢)

Scaling, Rounding, Grouping
Key point: for each element, we can round ¢ fraction of it.

[ |
0 max T; t
L-

Original

! |
1/e 1/&2 t=1/e?

scale and round
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Make max z; = O(1/¢)

Scaling, Rounding, Grouping
Key point: for each element, we can round ¢ fraction of it.

L_1 J

1/e 1/2 t=1/?
group Lol L :
1/e 2/  4fe.. 1/e2 t=1/e?
a 2a
Xa:Xﬂ[;,?]. X= X1U...UXlog(1/5)-

Sy = SX1 + ... +SXlog(1/5)'

This can be done approximately in O(1/¢).
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Make max z; = O(1/¢)

Scaling, Rounding, Grouping
Key point: for each element, we can round ¢ fraction of it.

L_1 J

1/e 1/€ t=1/e
group Lol 1 !
/e 2/ 4fe.. 1/e2 t=1/e
scale for each group ' —
[;7 ] [27 g]
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Make max z; = O(1/¢)

We can reduce to this problem:
° XCll/e,2/¢],

o te[l/e1/e%,
* ¢ < X(X)/2 (Otherwise, we just let ¢ = 3(X)/2),

® BUT now, we have to compute Sx|0, ]

> If it's always sparse, we actually compute Sx[0, 1],
> NOW for the dense part:
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Additive Combinatorics

[Szemerédi & Vu '05]

There exists a constant ¢ such that the following holds.

Let Ay, ..., A; be subsets of [1, 4] of size at least |A|. If
l|A] > cu, then Ay + --- + A, contains an arithmetic
progression of length at least w.
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Additive Combinatorics

[Szemerédi & Vu '05]

There exists a constant ¢ such that the following holds.
Let Ay, ..., A; be subsets of [1, 4] of size at least |A|. If
0|A| > cu, then Ay +--- + A, contains an arithmetic
progression of length at least w.

Corollary

There exists a constant c such that: Let 44, ..., 4, be
subsets of [1,u]. If X{_,|A;| > culogu, then A; + - + A,
contains an arithmetic progression of length at least w.

e Common difference A < ETU < L.
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Using Additive Combinatorics

What we want to do?
If sy <t<spand s;— s 1 < O(ct),

We can say that ¢ € Sx approximately.
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Using Additive Combinatorics

What we want to do?
If s1 <t sy, and S — Si1 < O(Et),
We can say that ¢ € Sx approximately.

However, If X4 |4, > culog u.

Just dense S
0 Y(max A;)

s1=" sp=7 $—8-1=A=0), sp—s=>u
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Using Additive Combinatorics

l
If ¥°_,|Ai > 4culogu, we can choose at most 7 sefs that

have an arithmetic progression.
(We choose ones with the smallest maximum element)

Use //4 sets L1

0 iE(maX A)) Y (max A;)

1
51 < 8y = ZZ(maXAz-), $i—Sic1=A=00), s,—si=u

12/19



Using Additive Combinatorics

Just dense Sam—

Use ¢/4 sets L1l

USCOThel"SZTS IIIIIEIIIIIIIIIIIEII

0 iz(inax A) %E(max )

Y(max A;), s, > %Z(max A, si—si-1 < A= 0)

|

51 <
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Using Additive Combinatorics

Just dense

Use (/4 sets L

Use other sets

Use color-coding L

By color-coding, we can let ¢ = @(%E(max Ay) and 1= O(et).

t
81<§a

Sp = 1,

t/2 t

S; — Si—1 S O(&t)
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Approximating S[t/2, 1]

If A; + ...+ A, has a sequence sy, ..., s, that:
t
S1 < 5, Sn, > t, S; — Si—1 < O(E—It).

Then )
S={t/2+¢ti:te]0, >

approximates S[t/2, {] with additive error «t.
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Approximating S[t/2, 1]

If A; + ...+ A, has a sequence sy, ..., s, that:
t
S1 < 5, Sn, > t, S; — Si—1 < O(E—It).

Then )
S={t/2+¢ti:te]0, >

approximates S[t/2, {] with additive error «t.

For S[1, t/2], again, we use grouping:

Compute S[1,2], S[2,4],S[4, 8]... and merge. (log(1/¢) times)
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Color Coding

e Let YC X that X(Y) =t. We have X € [1/¢,2/¢].
° |Y|<et Let Y=k

e If t < X(X), Y just uses a few elements in X.
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Color Coding

Let YC X that X(Y) = t. We have X € [1/¢,2/¢].
Y| <et Let |Y] =k
If t < ¥(X), Y just uses a few elements in X.

Color Coding: [Bringmann ‘17]
> Randomly partition X to ©(k) subset.

» With high probability, | YN X;| <1 forall 7.
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Color Coding

Let YC X that X(Y) = t. We have X € [1/¢,2/¢].
Y| <et Let |Y] =k
If t < ¥(X), Y just uses a few elements in X.

Color Coding: [Bringmann ‘17]
> Randomly partition X to ©(k) subset.

» With high probability, | YN X;| <1 forall 7.
> With high probability, (V) € X1 + ... + Xg ;.
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Color Coding

With high probability, £(Y) € Xi + ... + X5 .
For any s € Sx, with high probability, s € X + ... + Xg ;.

5 (max X;) = O(k- é) —8(1).
Common distance [ = O(et)

AL TR A

Xé(k)
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Technical Overview

Tree-Like
Structure

7
Sparse Conversation + |
&Addi'rive Combinatorics

[ need maxX =
0(1/¢)

Reduce problem by
scaling and grouping

Ny e
_ need t= \
need A= O(E (1/zz(maxAi)
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Open Questions

¢ Does Partition admit a deterministic approximation
scheme in time O(n+ 1/¢)?

* Does Subset Sum admit a deterministic weak
approximation scheme in time O(n+ 1/¢)?

® Does Subset Sum (or Partition) have an exact algorithm
in time O(n + w)? (wis the maximum element in X.)
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