A Nearly Quadratic-Time FPTAS for Knapsack

Jiayi Lian (Joint work with Lin Chen, Yuchen Mao, and Guochuan Zhang)

Zhejiang University

June 14, 2024

Knapsack

- n items with weights $\{w_i\}_i$ and profits $\{p_i\}_i$
- ullet a knapsack with capacity t
- maximize total profit subject to the capacity constraint

$$\max \left\{ \sum_{i=1}^{n} p_i x_i : \sum_{i=1}^{n} w_i x_i \leqslant t, x_i \in \{0, 1\} \right\}$$

Knapsack

- n items with weights $\{w_i\}_i$ and profits $\{p_i\}_i$
- ullet a knapsack with capacity t
- maximize total profit subject to the capacity constraint

$$\max \left\{ \sum_{i=1}^{n} p_i x_i : \sum_{i=1}^{n} w_i x_i \leqslant t, x_i \in \{0, 1\} \right\}$$

NP-hard

Approximation Scheme

- FPTAS: fully polynomial-time approximation scheme
- for any instance I and any $\varepsilon > 0$,

$$ALG(I, \varepsilon) \geqslant (1 - \varepsilon)OPT(I)$$

• runs in $poly(|I|, 1/\varepsilon)$ time

Current work

```
\begin{array}{cccc} O(n\log n + (\frac{1}{\varepsilon})^4\log\frac{1}{\varepsilon}) & \text{[Ibarra \& Kim '75]} \\ O(n\log n + (\frac{1}{\varepsilon})^4) & \text{[Lawler '79]} \\ O(n\log\frac{1}{\varepsilon} + (\frac{1}{\varepsilon})^3\log^2\frac{1}{\varepsilon}) & \text{[Kellerer \& Pferschy '04]} \\ O(n\log\frac{1}{\varepsilon} + (\frac{1}{\varepsilon})^{5/2}\log^3\frac{1}{\varepsilon}) & \text{[Rhee '15]} \\ O(n\log\frac{1}{\varepsilon} + (\frac{1}{\varepsilon})^{12/5}/2^{\Omega(\sqrt{\log(1/\varepsilon)})}) & \text{[Chan '18]} \\ O(n\log\frac{1}{\varepsilon} + (\frac{1}{\varepsilon})^{9/4}/2^{\Omega(\sqrt{\log(1/\varepsilon)})}) & \text{[Jin '19]} \\ \widetilde{O}(n + (\frac{1}{\varepsilon})^{11/5}/2^{\Omega(\sqrt{\log(1/\varepsilon)})}) & \text{[Deng, Jin \& Mao '23]} \end{array}
```

Conditional lower bound $\Omega((n+1/\varepsilon)^{2-\delta})$ for any $\delta>0$ [Künnemann, Paturi & Schneider '17] [Cygan, Mucha, Węgrzycki & Włodarczyk '19]

Current work

```
O(n \log n + (\frac{1}{2})^4 \log \frac{1}{2})
                                                                        [Ibarra & Kim '75]
              O(n\log n + (\frac{1}{2})^4)
                                                                               [Lawler '79]
         O(n\log\frac{1}{5} + (\frac{1}{5})^3\log^2\frac{1}{5})
                                                                 [Kellerer & Pferschy '04]
       O(n\log\frac{1}{2} + (\frac{1}{2})^{5/2}\log^3\frac{1}{2})
                                                                                [Rhee '15]
O(n \log \frac{1}{2} + (\frac{1}{2})^{12/5} / 2^{\Omega(\sqrt{\log(1/\epsilon)})})
                                                                                [Chan '18]
O(n\log\frac{1}{\varepsilon} + (\frac{1}{\varepsilon})^{9/4}/2^{\Omega(\sqrt{\log(1/\varepsilon)})})
                                                                                  [Jin '19]
    \widetilde{O}(n + (\frac{1}{\epsilon})^{11/5}/2^{\Omega(\sqrt{\log(1/\epsilon)})})
                                                                     [Deng, Jin & Mao '23]
                   O(n + (\frac{1}{2})^2)
                                                                    Our Work & [Mao '24]
```

Conditional lower bound $\Omega((n+1/\varepsilon)^{2-\delta})$ for any $\delta>0$ [Künnemann, Paturi & Schneider '17] [Cygan, Mucha, Węgrzycki & Włodarczyk '19]

Value Function

- Let I be a set of items.
- Define $f_I: \{0,1,2,\ldots,t\} \to \mathbb{Z}$ as follows.

$$f_I(y) = \max \left\{ \sum_{i \in I} p_i x_i : \sum_{i \in I} w_i x_i \leqslant y, x_i \in \{0, 1\} \right\}$$

Value Function

- Let I be a set of items.
- Define $f_I:\{0,1,2,\ldots,t\}\to\mathbb{Z}$ as follows.

$$f_I(y) = \max \left\{ \sum_{i \in I} p_i x_i : \sum_{i \in I} w_i x_i \leqslant y, x_i \in \{0, 1\} \right\}$$

• We want to compute $f_I(t)$ approximately.

Compute Value Function

- Let I_1 and I_2 be a partition of I.
- We have for any $y \in \{0, \ldots, t\}$

$$f_I(y) = \max \{ f_{I_1}(y_1) + f_{I_2}(y_2) : y_1 + y_2 = y \}$$

Compute Value Function

- Let I_1 and I_2 be a partition of I.
- We have for any $y \in \{0, \dots, t\}$

$$f_I(y) = \max \{f_{I_1}(y_1) + f_{I_2}(y_2) : y_1 + y_2 = y\}$$

• (max, +)-convolution

$$f_I=f_{I_1}\oplus f_{I_2}.$$

Compute Value Function

- Let I_1 and I_2 be a partition of I.
- We have for any $y \in \{0, \dots, t\}$

$$f_I(y) = \max \{ f_{I_1}(y_1) + f_{I_2}(y_2) : y_1 + y_2 = y \}$$

• (max, +)-convolution

$$f_I = f_{I_1} \oplus f_{I_2}.$$

• Approximate the whole function f_{I_1} and f_{I_2} rather than a single value $f_{I_1}(t)$ or $f_{I_2}(t)$.

Approximate a function

• \widetilde{f} approximate f with factor $1+\varepsilon$ if for any $y\in\{0,\ldots,t\}$,

$$0 \leqslant f(y) - \widetilde{f}(y) \leqslant \varepsilon \cdot \widetilde{f}(y).$$

• \widetilde{f} approximate f with additive error δ if for any $y \in \{0, \dots, t\}$,

$$0 \leqslant f(y) - \widetilde{f}(y) \leqslant \delta.$$

Main Idea

- If $f_I(t) \geqslant B$,
 - ightharpoonup compute a \widetilde{f} approximate f with additive error εB .
 - **b** but not a real $1 + \varepsilon$ factor approximation

Main Idea

- If $f_I(t) \geqslant B$,
 - ightharpoonup compute a \widetilde{f} approximate f with additive error εB .
 - but not a real $1 + \varepsilon$ factor approximation
- If $f_I = f_{I_1} \oplus f_{I_2}$ and $f_{I_1} \leqslant B_1$
 - ightharpoonup we can approximate f_{I_1}, f_{I_2} with additive error $\frac{\varepsilon B}{2}$.
 - equal to approximate f_{I_1} with factor $1 + \Theta(\varepsilon \frac{B}{B_1})$.

Main Idea

- If $f_I(t) \geqslant B_I$
 - ightharpoonup compute a \widetilde{f} approximate f with additive error εB .
 - but not a real $1 + \varepsilon$ factor approximation
- If $f_I = f_{I_1} \oplus f_{I_2}$ and $f_{I_1} \leqslant B_1$
 - we can approximate f_{I_1}, f_{I_2} with additive error $\frac{\varepsilon B}{2}$.
 - equal to approximate f_{I_1} with factor $1 + \Theta(\varepsilon \frac{B}{B_1})$.
- allow a Large factor!

An Additive Combinatorics Result

- Two multi-sets A and B of integers $[1, p_{\max}]$.
- If $|\mathrm{supp}(A)| \geqslant \widetilde{\Omega}(p_{\mathrm{max}}^{1/2})$ and $\Sigma(B) \geqslant \widetilde{\Omega}(p_{\mathrm{max}}^{3/2})$, then $\exists A' \subseteq A, B' \subseteq B$ such that $\Sigma(A') = \Sigma(B')$.

[Chen, Lian, Mao & Zhang '24]

A Proximity Result

• break item b(t) for capacity t

A Proximity Result

ullet break item b(t) for capacity t

A Proximity Result

- larger index and lower efficiency
- break item b(t) for capacity t
- By additive combinatorics, $p(I_1^-) \leqslant O(p_{\max}^{3/2})$ and $p(I_2^+) \leqslant O(p_{\max}^{3/2})$
 - $|\operatorname{supp}(I_2)| = \Theta(p_{\max}^{1/2})$ and if $p(I_1^-), p(I_3^+) \geqslant \widetilde{\Omega}(p_{\max}^{3/2})$

Bound the maximum profit

• Partition the items into I_1, I_2, \ldots by their profit

$$I_{j} = \left\{ i \in I : p_{i} \in \left(2^{j-1} \cdot \Delta, 2^{j} \cdot \Delta \right) \right\}, \quad \Delta = \Theta(\varepsilon \cdot \text{opt}).$$

$$\Delta \quad 2\Delta \quad 4\Delta \quad 8\Delta \cdots \qquad \frac{1}{\varepsilon} \Delta$$

$$f_{I} = f_{I_{1}} \oplus f_{I_{2}} \oplus \cdots \oplus f_{I_{\text{log } 1/\varepsilon}}$$

Bound the maximum profit

• Partition the items into I_1, I_2, \ldots by their profit

$$I_j = \left\{ i \in I : p_i \in \left(2^{j-1} \cdot \Delta, 2^j \cdot \Delta\right] \right\}, \ \ \Delta = \Theta(\varepsilon \cdot \mathrm{opt}).$$

- for each j, scale the profits to $(\frac{1}{\varepsilon}, \frac{2}{\varepsilon}]$.
- Round to integers.

A Reduced Instance

- $p_i \in \left(\frac{1}{\varepsilon}, \frac{2}{\varepsilon}\right] \cap \mathbb{Z}$
- $f_I(t) \in \left[\frac{1}{\varepsilon^2} \frac{2}{\varepsilon^2}\right]$
- GOAL: approximate f_I with factor $\widetilde{O}(\varepsilon)$, or with absolute error

$$\widetilde{O}(\varepsilon) \cdot f_I(t) = \widetilde{O}(\frac{1}{\varepsilon})$$

The Proximity Result

•
$$p(I_1^-) \leqslant O(\frac{1}{\varepsilon^{3/2}})$$
 and $p(I_3^+) \leqslant O(\frac{1}{\varepsilon^{3/2}})$

The Proximity Result

- $p(I_1^-) \leqslant O(\frac{1}{\varepsilon^{3/2}})$ and $p(I_3^+) \leqslant O(\frac{1}{\varepsilon^{3/2}})$
- Approximate $f_{I_1}, f_{I_2}, f_{I_3}$ and $f_I = f_{I_1} \oplus f_{I_2} \oplus f_{I_3}$.

Approximate f_{I_2} :

- there are only $\Theta(\frac{1}{\varepsilon^{1/2}})$ distinct profits.
- can be computed in $\widetilde{O}(\frac{1}{\varepsilon}m^2)=\widetilde{O}(\frac{1}{\varepsilon^2})$ time where $m=\Theta(\frac{1}{\varepsilon^{1/2}})$

[Chan' 18]

 $f_{I_1} \oplus f_{I_2} \oplus \cdots \oplus f_{I_m}$ can be $(1+\varepsilon)$ approximated in $O(\frac{1}{\varepsilon}m^2)$ time if the items in each I_i have the same profit.

Approximate f_{I_3} and f_{I_1} :

- it suffices to approximate $\min(f_{I_3}, O(\frac{1}{\varepsilon^{3/2}}))$
- allow a "large" approximation factor.
 - ▶ the absolute error allowed is $\widetilde{O}(\varepsilon) \cdot f_I(t) = \widetilde{O}(\frac{1}{\varepsilon})$.
 - ▶ the approximation factor now is $1 + \widetilde{O}(\varepsilon^{1/2})$.
 - ▶ allow rescaling and rounding: $p_i' \in (\frac{1}{\varepsilon^{1/2}}, \frac{2}{\varepsilon^{1/2}}] \cap \mathbb{Z}$.

Approximate f_{I_3} and f_{I_1} :

- it suffices to approximate $\min(f_{I_3}, O(\frac{1}{\varepsilon^{3/2}}))$
- allow a "large" approximation factor.
 - ▶ the absolute error allowed is $\widetilde{O}(\varepsilon) \cdot f_I(t) = \widetilde{O}(\frac{1}{\varepsilon})$.
 - lacktriangle the approximation factor now is $1+\widetilde{O}(arepsilon^{1/2}).$
 - ▶ allow rescaling and rounding: $p_i' \in (\frac{1}{\varepsilon^{1/2}}, \frac{2}{\varepsilon^{1/2}}] \cap \mathbb{Z}$.
- computed by standard dynamic programming in $\widetilde{O}(\frac{1}{\varepsilon^2})$ time.

End of Story?

We need to approximate f_I on all capacities.

We need to approximate f_I on all capacities.

But, proximity result only works for a single capacity.

We need to approximate f_I on all capacities.

But, proximity result only works for a single capacity.

• All $t' \in [t_1, t_0]$ share the same partition (I_1, I_2, I_3) .

- All $t' \in [t_1, t_0]$ share the same partition (I_1, I_2, I_3) .
- partition [0,t] into $O(\frac{1}{\varepsilon^{1/2}})$ intervals.

- Compute I_1^j and I_3^j
 - lacksquare for $j\in[1, heta]$, $\emph{I}_{1}^{j}\subseteq\emph{I}_{1}^{j-1}$, $\emph{I}_{3}^{j-1}\subseteq\emph{I}_{3}^{j}$
 - ▶ Can be computed in $\widetilde{O}(\frac{1}{\varepsilon^2})$ by dynamic programming

- Compute I_2^j

 - ▶ the approximation factor can be $1 + \frac{1}{|\vec{E_2}|}$.

Recall [Chan' 18]

 $f_{I_1} \oplus f_{I_2} \oplus \cdots \oplus f_{I_m}$ can be $(1+\varepsilon)$ approximated in $\widetilde{O}(\frac{1}{\varepsilon}m^2)$ time if the items in each I_i have the same profit.

- Compute I_2^j

 - lacktriangle the approximation factor can be $1+rac{1}{|I_2^j|}.$
 - $f_{f_2^j}$ can be computed in $\widetilde{O}(|f_2^j|\cdot rac{1}{arepsilon})$ time.

Recall [Chan' 18]

 $f_{I_1} \oplus f_{I_2} \oplus \cdots \oplus f_{I_m}$ can be $(1+\varepsilon)$ approximated in $\widetilde{O}(\frac{1}{\varepsilon}m^2)$ time if the items in each I_i have the same profit.

- Compute I_2^j
 - $\qquad \qquad \blacktriangleright \ f_{\mathit{I}_{2}^{j}} \leqslant |\mathit{I}_{2}^{j}| \cdot \tfrac{2}{\varepsilon}.$
 - ▶ the approximation factor can be $1 + \frac{1}{|I_2'|}$.
 - $f_{f_2^j}$ can be computed in $\widetilde{O}(|f_2^j|\cdot rac{1}{arepsilon})$ time.

Recall [Chan' 18]

 $f_{I_1} \oplus f_{I_2} \oplus \cdots \oplus f_{I_m}$ can be $(1+\varepsilon)$ approximated in $\widetilde{O}(\frac{1}{\varepsilon}m^2)$ time if the items in each I_i have the same profit.

Summary

Key: small contribution = large approximation factor

- Use additive combinatorics results.
 - ▶ Reduce Problem such that $p_{\max} = \Theta(\frac{1}{\varepsilon})$.
 - $I = I_1 \cup I_2 \cup I_3$
 - we can compute them in $\widetilde{O}(\frac{1}{\varepsilon^2})$ time
 - proximity result only works for a single capacity.

Summary

Key: small contribution = large approximation factor

- Use additive combinatorics results.
- partition [0, t] into intervals.
 - ightharpoonup compute f_{I_1}, f_{I_3} for all intervals at the same time..
 - rescale f_{I_2} and compute all f_{I_2} in quadratic time.

Summary

Key: small contribution = large approximation factor

- Use additive combinatorics results.
- partition [0, t] into intervals.
- Get a $\widetilde{O}(n+rac{1}{arepsilon^2})$ time FPTAS !

Open Problems

- Is there an FPTAS running in $O(n/\varepsilon)$ time?
 - $ightharpoonup O((rac{1}{arepsilon})^2 n \log rac{1}{arepsilon})$ [Kellerer & Pferschy '99]
 - $ightharpoonup \widetilde{O}(\frac{1}{\varepsilon}n^{3/2})$ [Chan '18]
- Is there an $O(nw_{\text{max}})$ -time algorithm?
- Is there an $O(n+(w_{\max}+p_{\max})^{2-\delta})$ -time algorithm for some $\delta>0$?

Thank You!