A Nearly Quadratic-Time FPTAS for Knapsack

Jiayi Lian (Joint work with Lin Chen, Yuchen Mao, and Guochuan Zhang)

Zhejiang University

June 14, 2024

Knapsack

- *n* items with weights $\{w_i\}$ and profits $\{p_i\}$
- *•* a knapsack with capacity *t*
- *•* maximize total profit subject to the capacity constraint

$$
\max \left\{ \sum_{i=1}^{n} p_i x_i : \sum_{i=1}^{n} w_i x_i \leq t, x_i \in \{0, 1\} \right\}
$$

Knapsack

- *n* items with weights $\{w_i\}$ and profits $\{p_i\}$
- *•* a knapsack with capacity *t*
- *•* maximize total profit subject to the capacity constraint

$$
\max \left\{ \sum_{i=1}^{n} p_i x_i : \sum_{i=1}^{n} w_i x_i \leq t, x_i \in \{0, 1\} \right\}
$$

• NP-hard

Approximation Scheme

- *•* FPTAS: fully polynomial-time approximation scheme
- *•* for any instance *I* and any *ε >* 0,

$$
ALG(I, \varepsilon) \geq (1 - \varepsilon) \text{OPT}(I)
$$

• runs in $\text{poly}(|I|, 1/\varepsilon)$ time

Current work

$O(n \log n + (\frac{1}{\varepsilon})^4 \log \frac{1}{\varepsilon})$	[Ibarra & Kim '75]
$O(n \log n + (\frac{1}{\varepsilon})^4)$	[Lawler '79]
$O(n \log \frac{1}{\varepsilon} + (\frac{1}{\varepsilon})^{5/2} \log^3 \frac{1}{\varepsilon})$	[Kellerer & Pferschy '04]
$O(n \log \frac{1}{\varepsilon} + (\frac{1}{\varepsilon})^{12/5} / 2^{\Omega(\sqrt{\log(1/\varepsilon)})})$	[Rhee '15]
$O(n \log \frac{1}{\varepsilon} + (\frac{1}{\varepsilon})^{9/4} / 2^{\Omega(\sqrt{\log(1/\varepsilon)})})$	[Chan '18]
$O(n + (\frac{1}{\varepsilon})^{11/5} / 2^{\Omega(\sqrt{\log(1/\varepsilon)})})$	[Jin '19]
$\widetilde{O}(n + (\frac{1}{\varepsilon})^{11/5} / 2^{\Omega(\sqrt{\log(1/\varepsilon)})})$	[Deng, Jin & Mao '23]

*C*onditional lower bound $\Omega((n+1/\varepsilon)^{2-\delta})$ for any $\delta > 0$ [Künnemann, Paturi & Schneider '17] [Cygan, Mucha, Węgrzycki & Włodarczyk '19]

Current work

 $O(n \log n + (\frac{1}{\varepsilon})^4 \log \frac{1}{\varepsilon})$) [Ibarra & Kim '75] $O(n \log n + (\frac{1}{\varepsilon})^4$) [Lawler '79] $O(n\log{\frac{1}{\varepsilon}}+(\frac{1}{\varepsilon})^3\log^2{\frac{1}{\varepsilon}})$) [Kellerer & Pferschy '04] $O(n\log{\frac{1}{\varepsilon}}+(\frac{1}{\varepsilon})^{5/2}\log^3{\frac{1}{\varepsilon}})$) [Rhee '15] $O(n \log \frac{1}{\varepsilon} + (\frac{1}{\varepsilon})^{12/5}/2^{\Omega(\sqrt{\varepsilon})}$ log(1/*ε*))) [Chan '18] $O(n \log \frac{1}{\varepsilon} + (\frac{1}{\varepsilon})^{9/4} / 2^{\Omega(\sqrt{\log(1/\varepsilon)}))}$ [Jin '19] $\widetilde{O}(n + (\frac{1}{\varepsilon})^{11/5}/2^{\Omega(\sqrt{\varepsilon})}$ [Deng, Jin & Mao '23] $O(n + (\frac{1}{\varepsilon})^2)$) Our Work & [Mao '24]

*C*onditional lower bound $\Omega((n+1/\varepsilon)^{2-\delta})$ for any $\delta > 0$ [Künnemann, Paturi & Schneider '17] [Cygan, Mucha, Węgrzycki & Włodarczyk '19]

Value Function

- *•* Let *I* be a set of items.
- *•* Define *f^I* : *{*0*,* 1*,* 2*, . . . , t} →* Z as follows.

$$
f_I(y) = \max \left\{ \sum_{i \in I} p_i x_i : \sum_{i \in I} w_i x_i \leq y, x_i \in \{0, 1\} \right\}
$$

Value Function

- *•* Let *I* be a set of items.
- *•* Define *f^I* : *{*0*,* 1*,* 2*, . . . , t} →* Z as follows.

$$
f_I(y) = \max \left\{ \sum_{i \in I} p_i x_i : \sum_{i \in I} w_i x_i \leq y, x_i \in \{0, 1\} \right\}
$$

• We want to compute *fI*(*t*) approximately.

Compute Value Function

- *•* Let *I*¹ and *I*² be a partition of *I*.
- *•* We have for any *y ∈ {*0*, . . . , t}*

$$
f_I(y) = \max \{f_{I_1}(y_1) + f_{I_2}(y_2) : y_1 + y_2 = y\}
$$

Compute Value Function

- *•* Let *I*¹ and *I*² be a partition of *I*.
- *•* We have for any *y ∈ {*0*, . . . , t}*

$$
f_I(y) = \max \{f_{I_1}(y_1) + f_{I_2}(y_2) : y_1 + y_2 = y\}
$$

• (max*,* +)-convolution

$$
f_I = f_{I_1} \oplus f_{I_2}.
$$

Compute Value Function

- Let I_1 and I_2 be a partition of *I*.
- *•* We have for any *y ∈ {*0*, . . . , t}*

$$
f_I(y) = \max \{f_{I_1}(y_1) + f_{I_2}(y_2) : y_1 + y_2 = y\}
$$

• (max*,* +)-convolution

$$
f_I=f_{I_1}\oplus f_{I_2}.
$$

 \bullet Approximate the whole function f_{I_1} and f_{I_2} rather than a single value $f_{I_1}(t)$ or $f_{I_2}(t)$.

Approximate a function

• \widetilde{f} approximate f with factor $1 + \varepsilon$ if for any *y* ∈ {0, . . . , *t*},

$$
0 \leqslant f(y) - \widetilde{f}(y) \leqslant \varepsilon \cdot \widetilde{f}(y).
$$

• f approximate f with additive error δ if for any *y* ∈ {0, . . . , *t*},

$$
0 \leqslant f(y) - \widetilde{f}(y) \leqslant \delta.
$$

Main Idea

• If $f_I(t) \ge B$,

 \blacktriangleright compute a \widetilde{f} approximate f with additive error εB .

 \blacktriangleright but not a real $1+\varepsilon$ factor approximation

Main Idea

• If $f_I(t) \ge B$,

 \blacktriangleright compute a \widetilde{f} approximate f with additive error εB .

 \blacktriangleright but not a real $1+\varepsilon$ factor approximation

• If
$$
f_I = f_{I_1} \oplus f_{I_2}
$$
 and $f_{I_1} \le B_1$

 \blacktriangleright we can approximate f_{I_1}, f_{I_2} with additive error $\frac{\varepsilon B}{2}$.

 \blacktriangleright equal to approximate f_{I_1} with factor $1+\Theta(\varepsilon\frac{B}{B_1})$ $\frac{B}{B_1}$).

Main Idea

• If $f_I(t) \ge B$,

 \blacktriangleright compute a \widetilde{f} approximate f with additive error εB .

 \blacktriangleright but not a real $1+\varepsilon$ factor approximation

• If
$$
f_I = f_{I_1} \oplus f_{I_2}
$$
 and $f_{I_1} \le B_1$

 \blacktriangleright we can approximate f_{I_1}, f_{I_2} with additive error $\frac{\varepsilon B}{2}$.

 \blacktriangleright equal to approximate f_{I_1} with factor $1+\Theta(\varepsilon\frac{B}{B_1})$ $\frac{B}{B_1}$).

• allow a Large factor !

An Additive Combinatorics Result

- Two multi-sets *A* and *B* of integers $[1, p_{\text{max}}]$.
- If $|\mathrm{supp}(A)| \geqslant \widetilde{\Omega}(p_{\max}^{1/2})$ and $\Sigma(B) \geqslant \widetilde{\Omega}(p_{\max}^{3/2})$, then $\exists A' \subseteq A, B' \subseteq B$ such that $\Sigma(A') = \Sigma(B')$.

[Chen, Lian, Mao & Zhang '24]

• break item *b*(*t*) for capacity *t*

A Proximity Result

• break item *b*(*t*) for capacity *t*

A Proximity Result

- *•* break item *b*(*t*) for capacity *t*
- *•* By additive combinatorics, *p*(*I −* 1) ⩽ *O*(*p* 3/2 max) and $p(I_3^+) \leqslant O(p_{\max}^{3/2})$

▶ $|\text{supp}(I_2)| = \Theta(p_{\text{max}}^{1/2})$ and if $p(I_1^{\text{-}}), p(I_3^{\text{+}}) \ge \tilde{\Omega}(p_{\text{max}}^{3/2})$

Bound the maximum profit

• Partition the items into *I*1*,I*2*, . . .* by their profit

$$
I_j = \{ i \in I : p_i \in (2^{j-1} \cdot \Delta, 2^j \cdot \Delta] \}, \quad \Delta = \Theta(\varepsilon \cdot \text{opt}).
$$

$$
\Delta \quad 2\Delta \qquad 4\Delta \qquad 8\Delta \cdots \qquad \frac{1}{\varepsilon} \Delta
$$

$$
f_I = f_{I_1} \oplus f_{I_2} \oplus \cdots \oplus f_{I_{\log 1/\varepsilon}}
$$

Bound the maximum profit

• Partition the items into *I*1*,I*2*, . . .* by their profit

$$
I_j = \left\{ i \in I : p_i \in \left(2^{j-1} \cdot \Delta, 2^j \cdot \Delta\right] \right\}, \quad \Delta = \Theta(\varepsilon \cdot \text{opt}).
$$

- $\bullet\,$ for each j , scale the profits to $(\frac{1}{\varepsilon}\,$ *ε ,* 2 *ε*].
- *•* Round to integers.

A Reduced Instance

- $p_i \in \left(\frac{1}{\varepsilon}\right)$ *ε ,* 2 *ε ∩* Z
- *• fI*(*t*) *∈* [1 $rac{1}{\varepsilon^2}$ $rac{2}{\varepsilon^2}$ $\frac{2}{\varepsilon^2}$
- GOAL: approximate f_I with factor $\widetilde{O}(\varepsilon)$, or with absolute error

$$
\widetilde{O}(\varepsilon) \cdot f_I(t) = \widetilde{O}(\frac{1}{\varepsilon})
$$

The Proximity Result

• $p(I_1^-) \leqslant O(\frac{1}{\varepsilon^{3/2}})$ $\frac{1}{\varepsilon^{3/2}}$) and $p(I_3^+) \leqslant O(\frac{1}{\varepsilon^{3/2}})$ $\frac{1}{\varepsilon^{3/2}}$

The Proximity Result

- $p(I_1^-) \leqslant O(\frac{1}{\varepsilon^{3/2}})$ $\frac{1}{\varepsilon^{3/2}}$) and $p(I_3^+) \leqslant O(\frac{1}{\varepsilon^{3/2}})$ $\frac{1}{\varepsilon^{3/2}}$
- Approximate $f_{I_1}, f_{I_2}, f_{I_3}$ and $f_I = f_{I_1} \oplus f_{I_2} \oplus f_{I_3}.$

Approximate f_{I_2} :

- $\bullet\,$ there are only $\Theta(\frac{1}{\varepsilon^{1/2}})$ distinct profits.
- can be computed in $O(\frac{1}{\varepsilon}m^2) = O(\frac{1}{\varepsilon^2})$ $\frac{1}{\varepsilon^2}$) time where $m = \Theta(\frac{1}{\varepsilon^{1/2}})$

[Chan' 18]

 $f_{I_1} \oplus f_{I_2} \oplus \cdots \oplus f_{I_m}$ can be $(1+\varepsilon)$ approximated in $O(\frac{1}{\varepsilon}m^2)$ time if the items in each *Iⁱ* have the same profit.

Approximate f_{I_3} and f_{I_1} :

- \bullet it suffices to approximate $\min(f_{I_{3}},\, O(\frac{1}{\varepsilon^{3/2}}))$ $\frac{1}{\varepsilon^{3/2}})$
- *•* allow a "large" approximation factor.

 \blacktriangleright the absolute error allowed is $\widetilde{O}(\varepsilon) \cdot f_I(t) = \widetilde{O}(\frac{1}{\varepsilon})$ *ε*)*.*

- \blacktriangleright the approximation factor now is $1 + O(\varepsilon^{1/2})$.
- \blacktriangleright allow rescaling and rounding: $p'_i \in (\frac{1}{\varepsilon^{1/2}})$ $\frac{1}{\varepsilon^{1/2}}, \frac{2}{\varepsilon^{1/2}}$ $\frac{2}{\varepsilon^{1/2}}] \cap \mathbb{Z}$.

Approximate f_{I_3} and f_{I_1} :

- \bullet it suffices to approximate $\min(f_{I_{3}},\, O(\frac{1}{\varepsilon^{3/2}}))$ $\frac{1}{\varepsilon^{3/2}})$
- *•* allow a "large" approximation factor.

 \blacktriangleright the absolute error allowed is $\widetilde{O}(\varepsilon) \cdot f_I(t) = \widetilde{O}(\frac{1}{\varepsilon})$ *ε*)*.*

 \blacktriangleright the approximation factor now is $1 + O(\varepsilon^{1/2})$.

 \blacktriangleright allow rescaling and rounding: $p'_i \in (\frac{1}{\varepsilon^{1/2}})$ $\frac{1}{\varepsilon^{1/2}}, \frac{2}{\varepsilon^{1/2}}$ $\frac{2}{\varepsilon^{1/2}}] \cap \mathbb{Z}$.

• computed by standard dynamic programming in $O(\frac{1}{\varepsilon^2})$ $\frac{1}{\varepsilon^2}$) time.

End of Story?

We need to approximate *f^I* on all capacities.

We need to approximate *f^I* on all capacities.

But, proximity result only works for a single capacity.

We need to approximate f_I on all capacities.

But, proximity result only works for a single capacity.

• All $t' \in [t_1, t_0]$ share the same partition (I_1, I_2, I_3) .

- All $t' \in [t_1, t_0]$ share the same partition (I_1, I_2, I_3) .
- partition $[0,t]$ into $O(\frac{1}{\varepsilon^{1/2}})$ *ε* 1/2) intervals.

· · · · · ·

- Compute I_1^j and I_3^j 3
	- ▶ for $j \in [1, \theta]$, $I_1^j \subseteq I_1^{j-1}$, $I_3^{j-1} \subseteq I_3^j$ 3
	- \blacktriangleright Can be computed in $O(\frac{1}{\varepsilon^2})$ *ε* ²) by dynamic programming

• Compute *I j* 2

$$
\blacktriangleright \ \ f_{\underline{I}_2^j} \leqslant |I_2^j| \cdot \tfrac{2}{\varepsilon}.
$$

▶ the approximation factor can be
$$
1 + \frac{1}{|\vec{F_2}|}
$$
.

Recall [Chan' 18] $f_{I_1} \oplus f_{I_2} \oplus \cdots \oplus f_{I_m}$ can be $(1+\varepsilon)$ approximated in $O(\frac{1}{\varepsilon}m^2)$ time if the items in each *Iⁱ* have the same profit.

• Compute *I j* 2

$$
\blacktriangleright \ \ f_{\underline{I}_2^j} \leqslant |I_2^j| \cdot \tfrac{2}{\varepsilon}.
$$

 \blacktriangleright the approximation factor can be $1 + \frac{1}{|\vec{P}_2|}$. 2

 \blacktriangleright $f_{\vec{I_{2}^j}}$ can be computed in $\widetilde{O}(|\vec{I_{2}^j}|)$ $\frac{j}{2}|\cdot\frac{1}{\varepsilon})$ time.

Recall [Chan' 18] $f_{I_1} \oplus f_{I_2} \oplus \cdots \oplus f_{I_m}$ can be $(1+\varepsilon)$ approximated in $O(\frac{1}{\varepsilon}m^2)$ time if the items in each *Iⁱ* have the same profit.

• Compute *I j* 2

$$
\blacktriangleright \ \ f_{\underline{I}_2^j} \leqslant |I_2^j| \cdot \tfrac{2}{\varepsilon}.
$$

 \blacktriangleright the approximation factor can be $1 + \frac{1}{|\vec{P}_2|}$. 2

$$
\blacktriangleright f_{\underline{I}_2^j} \text{ can be computed in } \widetilde{O}(|I_2^j| \cdot \tfrac{1}{\varepsilon}) \text{ time.}
$$

$$
\blacktriangleright \sum_{j} |I_2^j| \leq 2b(t) = O(\tfrac{1}{\varepsilon}).
$$

Recall [Chan' 18] $f_{I_1} \oplus f_{I_2} \oplus \cdots \oplus f_{I_m}$ can be $(1+\varepsilon)$ approximated in $O(\frac{1}{\varepsilon}m^2)$ time if the items in each *Iⁱ* have the same profit.

Summary

Key: small contribution = large approximation factor

- *•* Use additive combinatorics results.
	- \blacktriangleright Reduce Problem such that $p_{\text{max}} = \Theta(\frac{1}{\varepsilon}).$

$$
\blacktriangleright I = I_1 \cup I_2 \cup I_3
$$

- \blacktriangleright we can compute them in $\widetilde{O}(\frac{1}{\varepsilon^2})$ $\frac{1}{\varepsilon^2}$) time
- \triangleright proximity result only works for a single capacity.

Summary

Key: small contribution = large approximation factor

- *•* Use additive combinatorics results.
- *•* partition [0*, t*] into intervals.
	- \blacktriangleright compute f_{I_1}, f_{I_3} for all intervals at the same time..
	- \blacktriangleright rescale f_{I_2} and compute all f_{I_2} in quadratic time.

Summary

Key: small contribution = large approximation factor

- *•* Use additive combinatorics results.
- *•* partition [0*, t*] into intervals.
- Get a $\tilde{O}(n + \frac{1}{\varepsilon^2})$ *ε* ²) time FPTAS !

Open Problems

- *•* Is there an FPTAS running in *O*(*n*/*ε*) time?
	- ► $O((\frac{1}{\varepsilon})^2 n \log \frac{1}{\varepsilon})$ [Kellerer & Pferschy '99]

 \triangleright $\widetilde{O}(\frac{1}{\varepsilon})$ *ε n* 3/2) [Chan '18]

- Is there an $O(nw_{\text{max}})$ -time algorithm?
- *•* Is there an *O*(*n* + (*w*max + *p*max) 2*−δ*)-time algorithm for some $\delta > 0$?

Thank You!