Knapsack with Small Items*

Lian Jiayi ¹ (joint work with Chen Lin ², Mao Yuchen ¹ and Zhang Guochuan ¹)

¹Zhejiang University

²Texas Tech University

April 6, 2024

^{*}Faster Algorithms for Bounded Knapsack and Bounded Subset Sum Via Fine-Grained Proximity Results (SODA 2024)

The Knapsack Problem

- A knapsack of capacity T
- Set I: n items with weights $\{w_i\}_{i\in[n]}$ and profit $\{p_i\}_{i\in[n]}$
- T, wi, and pi are all integers
- Maximize the total profit s.t. the capacity constraint
- NP-hard, solvable in O(nT) time [Bellman '57]
- Pseudo-polynomial time complexity in other parameters?
 - the number of items n
 - the maximum weight of items $w = \max\{w_i\}_{i \in [n]}$

Current Results

O(nT) $O(n^3 \cdot w^2)$	[Bellman '57] [Tamir '09]
$\widetilde{O}(n+w\cdotT)$	[Kellerer& Pferschy '04] [Bateni et al. '18] [Axiotis & Tzamos '19]
$\widetilde{O}(n \cdot w^2 \cdot \min\{n, w\})$	[Bateni et al. '18]
$\widetilde{O}(\mathbf{n}\cdot\mathbf{w}^2)$	[Eisenbrand & Weismantel '19] [Axiotis & Tzamos '19]
$\widetilde{O}(n+w^3)$	[Polak et al. '21]

Conditional Lower Bound	[Kunnemann et al. '17]
$(n+w)^{2-o(1)}$	[Tygan et al. '19]

Current Results

O(nT) $O(n^3 \cdot w^2)$	[Bellman '57] [Tamir '09]
$\widetilde{O}(n+w\cdotT)$	[Kellerer& Pferschy '04] [Bateni et al. '18] [Axiotis & Tzamos '19]
$\widetilde{O}(\mathbf{n} \cdot \mathbf{w}^2 \cdot \min\{\mathbf{n}, \mathbf{w}\})$	[Bateni et al. '18]
$\widetilde{O}(\mathbf{n}\cdot\mathbf{w}^2)$	[Eisenbrand & Weismantel '19] [Axiotis & Tzamos '19]
$\widetilde{O}(n+w^3)$	[Polak et al. '21]
$\widetilde{O}(n + w^{2.4})$	Our Work
Conditional Lower Bound $(n + w)^{2-o(1)}$	[Kunnemann et al. '17] [Tygan et al. '19]

Current Results

O(nT) $O(n^3 \cdot w^2)$	[Bellman '57] [Tamir '09]
$\frac{\tilde{O}(n+w\cdot T)}{\tilde{O}(n+w\cdot T)}$	[Kellerer& Pferschy '04] [Bateni et al. '18] [Axiotis & Tzamos '19]
$\widetilde{O}(\mathbf{n} \cdot \mathbf{w}^2 \cdot \min\{\mathbf{n}, \mathbf{w}\})$	[Bateni et al. '18]
$\widetilde{O}(\mathbf{n}\cdot\mathbf{w}^2)$	[Eisenbrand & Weismantel '19] [Axiotis & Tzamos '19]
$\widetilde{O}(n+w^3)$	[Polak et al. '21]
$\widetilde{O}(n + w^{2.4})$	Our Work
$O(n + w^2)$	[Jin '23], [Bringmann '23]
Conditional Lower Bound $(n + w)^{2-o(1)}$	[Kunnemann et al. '17] [Tygan et al. '19]

Dynamic Programming in O(nT)

• Let I' be a set of items. For $x = \in \{0,...,T\}$, let

$$f_{\mathbf{I}'}[\mathbf{x}] = \mathsf{max}\{\sum_{i\in\mathbf{I}'}p_iy_i:\sum_{i\in\mathbf{I}'}w_iy_i\leqslant \mathbf{x}, y_i\in\{0,1\}\}.$$

• Goal: f_I[T]

Dynamic Programming in O(nT)

• Let I' be a set of items. For $x = \in \{0,...,T\},$ let

$$f_{\mathbf{I}'}[x] = \max\{\sum_{i\in\mathbf{I}'}p_iy_i:\sum_{i\in\mathbf{I}'}w_iy_i\leqslant x, y_i\in\{0,1\}\}.$$

- Goal: f_I[T]
- Algorithm:
 - 1. I_i be the first i-th items,
 - 2. for $i = 1, \ldots, n$: compute

$$f_{\mathtt{I}_i}[x] = \max\{f_{\mathtt{I}_{i-1}}[x], f_{\mathtt{I}_{i-1}}[x-w_i] + p_i\}$$

for $x = 0, \dots, T. - O(T)$ time,

- 3. return $f_{I}[T]$.
- If we can add items group by group?

(max, +)-Convolution

- Let I_1 and I_2 be two disjoint sets of items. Then $f_{I_1\cup I_2}=f_{I_1}\oplus f_{I_2}$ where

$$f_{\mathtt{I}_1} \oplus f_{\mathtt{I}_2}[\mathtt{x}] = \max_{\mathtt{x}' \in [0,\mathtt{x}]} (f_{\mathtt{I}_1}[\mathtt{x}'] + f_{\mathtt{I}_2}[\mathtt{x}-\mathtt{x}']).$$

• Let
$$I = I_1 \cup ... \cup I_m$$
,

$$f_{I}=f_{I_{1}}\oplus...\oplus f_{I_{m}}.$$

• Computing $f_{I_1} \oplus f_{I_2}$ requires $O(T^2)$ time in general.

Faster Convolution

Lemma [SMAWK algorithm '87]

If f_{I_2} is k-step concave for some k, then $f_{I_1}\oplus f_{I_2}$ can be computed in O(T) time.

- $\bullet \ f[ik] f[(i-1)k] \geq f[(i+1)k] f[ik] \ for \ all \ i,$
- for all j such that $j \pmod{k} \neq 0, \, f[j] = f[j-1].$

An $\widetilde{O}(n + wT)$ -time Algorithm

- Partition the items by their weights
- f for each group is w-step concave for their weight w

An $\widetilde{O}(n + wT)$ -time Algorithm

- Partition the items by their weights
- f for each group is w-step concave for their weight w
- Algorithm:
 - 1. Partition the items by their weights -O(n) time
 - 2. Compute f for each group $-\widetilde{O}(n)$ time
 - 3. Merge all f's one by one using convolution -O(wT) time

Convolution with Hint

- Let I_1, \ldots, I_w be the partition of I by item weight.
- Our goal is $f_I[T]$ rather than the whole function f_I .
- $f_I[T] = f_{I_1}[t_1] + \dots + f_{I_w}[t_w]$ for some $t_1 + \dots + t_w = t$.
- We can not know $\{t_1, \ldots, t_w\}$ exactly.
- Some hint on $\{t_1,\ldots,t_w\}$ may help to accelerate the convolution.

A Proximity Result

- Assume that $p_1/w_1 \ge p_2/w_2 \ge \cdots \ge p_n/w_n$.
- Let x' = {1,...,1,0,...,0} be the maximal prefix solution. (greedily select the item with the highest efficiency)

A Proximity Result

- Assume that $p_1/w_1 \ge p_2/w_2 \ge \cdots \ge p_n/w_n$.
- Let x' = {1,...,1,0,...,0} be the maximal prefix solution. (greedily select the item with the highest efficiency)

Lemma [Eisenbrand & Weismantel '19][Polak et al. '21] There is an optimal solution x* such that

An $\widetilde{O}(n + w^3)$ Algorithm

• There exists $\{g_1,\ldots,g_w\}$ such that

$$\sum_{j\in\{1,\dots,w\}}|\textbf{t}_j-\textbf{g}_j|\leqslant 2w^2.$$

- When computing f_{I1∪····∪Ij} ⊕ f_{Ij+1}, it suffices to consider their subsequences of length at most 4w². Each convolution needs O(w²) time. [Polak et al. '21]
- we can compute $f_I[T]$ in $\widetilde{O}(n + w^3)$ time.

A Stronger Hint

Previous hint:

$$\sum_{j\in\{1,\dots,w\}}|\textbf{t}_j-\textbf{g}_j|\leqslant 2w^2.$$

- It is impossible that for any $j \in \{1, \dots, w\}$,

$$|\textbf{t}_j - \textbf{g}_j| = \Theta(\textbf{w}^2).$$

• There exists a subset D of $\{1, \ldots, w\}$ that $|\mathsf{D}| = \widetilde{O}(w^{0.5})$ and

$$\sum_{j\in\overline{D}}|\textbf{t}_j-\textbf{g}_j|\leqslant O(\textbf{w}^{1.5}).$$

An $\widetilde{O}(n + w^{5/2})$ -Time Algorithm

• There exists a subset D of $\{1, \ldots, w\}$ that $D = \widetilde{O}(w^{0.5})$ and

$$\sum_{j\in\overline{\mathsf{D}}}|\textbf{t}_j-\textbf{g}_j|\leqslant O(\textbf{w}^{1.5}).$$

- Only $\widetilde{O}(w^{0.5})$ out of the w convolutions require $O(w^2)$ time for each.
- The other convolutions require $O(w^{1.5})$ time for each.
- The total running time is

.

$$\widetilde{O}(\mathsf{n}+\mathsf{w}^{0.5}\cdot\mathsf{w}^2+\mathsf{w}\cdot\mathsf{w}^{1.5})=\widetilde{O}(\mathsf{n}+\mathsf{w}^{2.5})$$

Intuition for the Stronger Hint

OPT tends to select

- a lot of items in H,
- very few item in L.

Intuition for the Stronger Hint

- If items in M_1 and M_2 has $O(w^{0.5}\log w)$ distinct weight, then
- the total weight of items in H not selected by OPT is at most O(w^{1.5}),
- the total weight of items in L that are selected by OPT is at most $O(w^{1.5})$.

Additive Combinatorics

A Fundamental Result [Szemeredi & Vu '06] For any subset S of $\{1, \ldots, w\}$ with $|S| \ge O(w^{0.5} \log w)$, the subset sums of S contains an arithmetic progression of length w.

Additive Combinatorics

A Fundamental Result [Szemeredi & Vu '06]

For any subset S of $\{1, \ldots, w\}$ with $|S| \ge O(w^{0.5} \log w)$, the subset sums of S contains an arithmetic progression of length w.

It was first used to tackle Subset Sum. [Galil & Margalit '91] [Bringmann & Wellnitz '21]

Result in [Bringmann & Wellnitz '21](Informal)

If S is dense and has no $\Theta(1)$ -almost divisor, then there exists λ_X such that $[\lambda_X, \Sigma_X - \lambda_X] \subseteq S_X$.

Additive Combinatorics

Using additive combinatorics tools, we can obtain

Lemma

Let A and B be two subset of $\{1, \ldots, w\}$. If $|A| \ge O(w^{0.5} \log w)$ and $\sum_{x \in B} x \ge O(w^{1.5} \log w)$, then there are non-empty subsets $A' \subseteq A$ and $B' \subseteq B$ that

$$\sum_{\mathsf{x}\in\mathsf{A}'}\mathsf{x}=\sum_{\mathsf{x}\in\mathsf{B}'}\mathsf{x}$$

Further Improvement

- Using additive combinatorics result for multi-set.
- Partition into more groups (in terms of efficiency).

Further Improvement

- Using additive combinatorics result for multi-set.
- Partition into more groups (in terms of efficiency).
- We partition into six groups and obtain $\widetilde{O}(n + w^{2.4})$.

Further Improvement

- Using additive combinatorics result for multi-set.
- Partition into more groups (in terms of efficiency).
- We partition into six groups and obtain $\widetilde{O}(n + w^{2.4})$.
- [Bringmann '23] and [Jin '23] partition into $O(\log n)$ groups and obtain $\widetilde{O}(n+w^2).$

Other Results

- Bounded Knapsack: an $\tilde{O}(N+w^2)$ algorithm.
- Approximation for Knapsack: an $\widetilde{O}(n+\frac{1}{c^2})$ -time FPTAS.
- Subset sum: an $\widetilde{O}(n + w^{1.5})$ algorithm.

Thank you!