
Knapsack with Small Items*

Lian Jiayi 1
(joint work with Chen Lin 2, Mao Yuchen 1 and

Zhang Guochuan 1)

1Zhejiang University

2Texas Tech University

April 6, 2024

*Faster Algorithms for Bounded Knapsack and Bounded Subset Sum
Via Fine-Grained Proximity Results (SODA 2024)

1 / 18



The Knapsack Problem

• A knapsack of capacity T

• Set I: n items with weights {wi}i∈[n] and profit {pi}i∈[n]
• T, wi, and pi are all integers

• Maximize the total profit s.t. the capacity constraint

• NP-hard, solvable in O(nT) time [Bellman ‛57]

• Pseudo-polynomial time complexity in other parameters?
▶ the number of items n
▶ the maximum weight of items w = max{wi}i∈[n]

2/ 18



Current Results
O(nT) [Bellman ‛57]

O(n3 · w2) [Tamir ‛09]

Õ(n+ w · T) [Kellerer& Pferschy ‛04]
[Bateni et al. ‛18]

[Axiotis & Tzamos ‛19]

Õ(n · w2 ·min{n,w}) [Bateni et al. ‛18]

Õ(n · w2) [Eisenbrand & Weismantel ‛19]
[Axiotis & Tzamos ‛19]

Õ(n+ w3) [Polak et al. ‛21]

Õ(n+ w2.4) Our Work
Õ(n+ w2) [Jin ‛23], [Bringmann ‛23]

Conditional Lower Bound [Kunnemann et al. ‛17]
(n+ w)2−o(1) [Tygan et al. ‛19]

3/ 18



Current Results
O(nT) [Bellman ‛57]

O(n3 · w2) [Tamir ‛09]

Õ(n+ w · T) [Kellerer& Pferschy ‛04]
[Bateni et al. ‛18]

[Axiotis & Tzamos ‛19]

Õ(n · w2 ·min{n,w}) [Bateni et al. ‛18]

Õ(n · w2) [Eisenbrand & Weismantel ‛19]
[Axiotis & Tzamos ‛19]

Õ(n+ w3) [Polak et al. ‛21]

Õ(n+ w2.4) Our Work

Õ(n+ w2) [Jin ‛23], [Bringmann ‛23]

Conditional Lower Bound [Kunnemann et al. ‛17]
(n+ w)2−o(1) [Tygan et al. ‛19]

3/ 18



Current Results
O(nT) [Bellman ‛57]

O(n3 · w2) [Tamir ‛09]

Õ(n+ w · T) [Kellerer& Pferschy ‛04]
[Bateni et al. ‛18]

[Axiotis & Tzamos ‛19]

Õ(n · w2 ·min{n,w}) [Bateni et al. ‛18]

Õ(n · w2) [Eisenbrand & Weismantel ‛19]
[Axiotis & Tzamos ‛19]

Õ(n+ w3) [Polak et al. ‛21]

Õ(n+ w2.4) Our Work
Õ(n+ w2) [Jin ‛23], [Bringmann ‛23]

Conditional Lower Bound [Kunnemann et al. ‛17]
(n+ w)2−o(1) [Tygan et al. ‛19]

3/ 18



Dynamic Programming in O(nT)

• Let I′ be a set of items. For x =∈ {0, ...,T}, let

fI′ [x] = max{
∑
i∈I′

piyi :
∑
i∈I′

wiyi ⩽ x, yi ∈ {0, 1}}.

• Goal: fI[T]

• Algorithm:
1. Ii be the first i-th items,
2. for i = 1, . . . , n: compute

fIi [x] = max{fIi−1 [x], fIi−1 [x− wi] + pi}

for x = 0, . . . ,T. — O(T) time,
3. return fI[T].

• If we can add items group by group?

4/ 18



Dynamic Programming in O(nT)

• Let I′ be a set of items. For x =∈ {0, ...,T}, let

fI′ [x] = max{
∑
i∈I′

piyi :
∑
i∈I′

wiyi ⩽ x, yi ∈ {0, 1}}.

• Goal: fI[T]
• Algorithm:

1. Ii be the first i-th items,
2. for i = 1, . . . , n: compute

fIi [x] = max{fIi−1 [x], fIi−1 [x− wi] + pi}

for x = 0, . . . ,T. — O(T) time,
3. return fI[T].

• If we can add items group by group?
4/ 18



(max,+)-Convolution

• Let I1 and I2 be two disjoint sets of items. Then
fI1∪I2 = fI1 ⊕ fI2 where

fI1 ⊕ fI2 [x] = max
x′∈[0,x]

(fI1 [x
′] + fI2 [x− x′]).

• Let I = I1 ∪ ... ∪ Im,

fI = fI1 ⊕ ...⊕ fIm .

• Computing fI1 ⊕ fI2 requires O(T2) time in general.

5/ 18



Faster Convolution

Lemma [SMAWK algorithm ‛87]
If fI2 is k-step concave for some k, then fI1 ⊕ fI2 can be
computed in O(T) time.

• f[ik]− f[(i− 1)k] ≥ f[(i+ 1)k]− f[ik] for all i,
• for all j such that j (mod k) ≠ 0, f[j] = f[j− 1].

6/ 18



An Õ(n + wT)-time Algorithm
• Partition the items by their weights
• f for each group is w-step concave for their weight w

• Algorithm:
1. Partition the items by their weights — O(n) time
2. Compute f for each group — Õ(n) time
3. Merge all f‛s one by one using convolution — O(wT) time

7/ 18



An Õ(n + wT)-time Algorithm
• Partition the items by their weights
• f for each group is w-step concave for their weight w
• Algorithm:

1. Partition the items by their weights — O(n) time
2. Compute f for each group — Õ(n) time
3. Merge all f‛s one by one using convolution — O(wT) time

7/ 18



Convolution with Hint

• Let I1, . . . , Iw be the partition of I by item weight.

• Our goal is fI[T] rather than the whole function fI.

• fI[T] = fI1 [t1] + · · ·+ fIw [tw] for some t1 + . . .+ tw = t.

• We can not know {t1, . . . , tw} exactly.

• Some hint on {t1, . . . , tw} may help to accelerate the
convolution.

8/ 18



A Proximity Result
• Assume that p1/w1 ⩾ p2/w2 ⩾ · · · ⩾ pn/wn.
• Let x′ = {1, . . . , 1,0, . . . ,0} be the maximal prefix
solution. (greedily select the item with the highest
efficiency)

Lemma [Eisenbrand & Weismantel ‛19][Polak et al. ‛21]
There is an optimal solution x∗ such that∑

i∈I
|x∗i − x′i| ⩽ 2w.

b0 n

larger index has lower efficiency

9/ 18



A Proximity Result
• Assume that p1/w1 ⩾ p2/w2 ⩾ · · · ⩾ pn/wn.
• Let x′ = {1, . . . , 1,0, . . . ,0} be the maximal prefix
solution. (greedily select the item with the highest
efficiency)

Lemma [Eisenbrand & Weismantel ‛19][Polak et al. ‛21]
There is an optimal solution x∗ such that∑

i∈I
|x∗i − x′i| ⩽ 2w.

b0 n

larger index has lower efficiency

9/ 18



An Õ(n + w3) Algorithm

• There exists {g1, . . . , gw} such that∑
j∈{1,...,w}

|tj − gj| ⩽ 2w2.

• When computing fI1∪···∪Ij ⊕ fIj+1 , it suffices to consider
their subsequences of length at most 4w2.
Each convolution needs O(w2) time. [Polak et al. ‛21]

• we can compute fI[T] in Õ(n+ w3) time.

10 / 18



A Stronger Hint

• Previous hint: ∑
j∈{1,...,w}

|tj − gj| ⩽ 2w2.

• It is impossible that for any j ∈ {1, . . . ,w},

|tj − gj| = Θ(w2).

• There exists a subset D of {1, . . . ,w} that |D| = Õ(w0.5)
and ∑

j∈D

|tj − gj| ⩽ O(w1.5).

11 / 18



An Õ(n + w5/2)-Time Algorithm

• There exists a subset D of {1, . . . ,w} that D = Õ(w0.5)
and ∑

j∈D

|tj − gj| ⩽ O(w1.5).

• Only Õ(w0.5) out of the w convolutions require O(w2)
time for each.

• The other convolutions require O(w1.5) time for each.
• The total running time is

Õ(n+ w0.5 · w2 + w · w1.5) = Õ(n+ w2.5)

.

12 / 18



Intuition for the Stronger Hint

b0 n
HM1

M2 L

larger index has lower efficiency

OPT tends to select
• a lot of items in H,
• very few item in L.

13 / 18



Intuition for the Stronger Hint

b0 n
HM1

M2 L

larger index has lower efficiency

• If items in M1 and M2 has O(w0.5 logw) distinct weight,
then

• the total weight of items in H not selected by OPT is at
most O(w1.5),

• the total weight of items in L that are selected by OPT
is at most O(w1.5).

13 / 18



Additive Combinatorics

A Fundamental Result [Szemeredi & Vu ‛06]
For any subset S of {1, . . . ,w} with |S| ≥ O(w0.5 logw), the
subset sums of S contains an arithmetic progression of
length w.

It was first used to tackle Subset Sum. [Galil & Margalit
‛91] [Bringmann & Wellnitz ‛21]

Result in [Bringmann & Wellnitz ‛21](Informal)
If S is dense and has no Θ(1)-almost divisor, then there
exists λX such that [λX,ΣX − λX] ⊆ SX.

14 / 18



Additive Combinatorics

A Fundamental Result [Szemeredi & Vu ‛06]
For any subset S of {1, . . . ,w} with |S| ≥ O(w0.5 logw), the
subset sums of S contains an arithmetic progression of
length w.
It was first used to tackle Subset Sum. [Galil & Margalit
‛91] [Bringmann & Wellnitz ‛21]

Result in [Bringmann & Wellnitz ‛21](Informal)
If S is dense and has no Θ(1)-almost divisor, then there
exists λX such that [λX,ΣX − λX] ⊆ SX.

14 / 18



Additive Combinatorics
Using additive combinatorics tools, we can obtain
Lemma
Let A and B be two subset of {1, . . . ,w}. If
|A| ≥ O(w0.5 logw) and Σx∈Bx ≥ O(w1.5 logw), then there are
non-empty subsets A′ ⊆ A and B′ ⊆ B that∑

x∈A′

x =
∑
x∈B′

x.

b0 n
H M1 M2 L

larger index has lower efficiency

15 / 18



Further Improvement

• Using additive combinatorics result for multi-set.
• Partition into more groups (in terms of efficiency).

• We partition into six groups and obtain Õ(n+ w2.4).
• [Bringmann ‛23] and [Jin ‛23] partition into O(log n)
groups and obtain Õ(n+ w2).

b0 n
H M1 M2 L

larger index and lower efficiency

16 / 18



Further Improvement

• Using additive combinatorics result for multi-set.
• Partition into more groups (in terms of efficiency).
• We partition into six groups and obtain Õ(n+ w2.4).

• [Bringmann ‛23] and [Jin ‛23] partition into O(log n)
groups and obtain Õ(n+ w2).

b0 n

H M1 M2 L

larger index and lower efficiency

16 / 18



Further Improvement

• Using additive combinatorics result for multi-set.
• Partition into more groups (in terms of efficiency).
• We partition into six groups and obtain Õ(n+ w2.4).
• [Bringmann ‛23] and [Jin ‛23] partition into O(log n)
groups and obtain Õ(n+ w2).

b0 n

H M1 M2 L

larger index and lower efficiency

16 / 18



Other Results

• Bounded Knapsack: an Õ(N+ w2) algorithm.

• Approximation for Knapsack: an Õ(n+ 1
ε2

)-time FPTAS.

• Subset sum: an Õ(n+ w1.5) algorithm.

17 / 18



Thank you!

18 / 18


