Knapsack with Small Items™

Lian Jiayi !
(joint work with Chen Lin 2, Mao Yuchen ! and
Zhang Guochuan 1)
1Zhejiang University

2Texas Tech University

April 6, 2024

“Faster Algorithms for Bounded Knapsack and Bounded Subset Sum

Via Fine-Grained Proximity Results (SODA 2024)
1/18

The Knapsack Problem

A knapsack of capacity T

Set I: nitems with weights {w;}ic[y and profit {pi}icin
T, w;, and p; are all integers

Maximize the total profit s.t. the capacity constraint
NP-hard, solvable in O(nT) time [Bellman '57]

Pseudo-polynomial fime complexity in other parameters?

> the number of items n
> the maximum weight of items w = max{wi}icy

2/18

Current Results

o(nT) [Bellman '57]
o(n® - w?) [Tamir ‘09]
On+w-T) [Kellerer& Pferschy '04]

[Bateni et al. '18]
[Axiotis & Tzamos '19]

O(n-w? - min{n,w}) [Bateni et al. 18]
Oo(n-w?) [Eisenbrand & Weismantel '19]
N [Axiotis & Tzamos '19]
o(n+wd) [Polak et al. '21]
Conditional Lower Bound [Kunnemann et al. '17]
(n+w)2—°M [Tygan et al. '19]

3/18

Current Results

o(nT) [Bellman '57]
o(n® - w?) [Tamir ‘09]
On+w-T) [Kellerer& Pferschy '04]

[Bateni et al. '18]
[Axiotis & Tzamos '19]

O(n- w? - min{n,w})

[Bateni et al. '18]

Oo(n-w?) [Eisenbrand & Weismantel '19]
N [Axiotis & Tzamos '19]
o(n+wd) [Polak et al. '21]
Oo(n+w?*) Our Work

Conditional Lower Bound
(n+w)2—e®

[Kunnemann et al. '17]
[Tygan et al. '19]

3/18

Current Results

o(nT) [Bellman '57]
o(n® - w?) [Tamir ‘09]
On+w-T) [Kellerer& Pferschy '04]

[Bateni et al. '18]
[Axiotis & Tzamos '19]

O(n-w? - min{n,w}) [Bateni et al. 18]
Oo(n-w?) [Eisenbrand & Weismantel '19]
N [Axiotis & Tzamos '19]
o(n+wd) [Polak et al. '21]
O(n+w?*) Our Work
O(n+w?) [Jin '23], [Bringmann ‘23]
Conditional Lower Bound [Kunnemann et al. '17]
(n+w)2—°M [Tygan et al. '19]

3/18

Dynamic Programming in O(nT)

e Let I’ be a set of items. For x =c {0, ..., T}, let

fI/[X] = max{z piYi : ZW,'Y,' < X,Yi € {0, 1}}

iel’ iel’

® Goal: f1[T]

4/18

Dynamic Programming in O(nT)

e Let I’ be a set of items. For x =c {0, ..., T}, let

froix] = max{> _piyi: > wiyi <xyi € {0,1}}.

ier ier
* Goal: f1[T]
e Algorithm:

1. I; be the first i-th items,

2. fori=1,...,n: compute

fIi [X] = max{prl[X]’ fqu[x - wi] + pl}
forx=0,...,T. — O(T) time,

3. return f7[T].

e If we can add items group by group?

4/18

(max, +)-Convolution

e Let I; and I, be two disjoint sets of items. Then
fIIUIz = fI1 @ fIZ Wher‘e

fr, ® fr,[x] = x,’g[%fxl(fn [X'] + f,[x — X]).

fr = fIl D ... EBf]:m-

* Computing f1, @ f1, requires O(T?) time in general.

5/18

Faster Convolution

Lemma [SMAWK algorithm '87]
If f1, is k-step concave for some k, then fr, & fr, can be
computed in O(T) time.

o f[ik] — f[(i — 1)k] > f[(i + 1)k] — f[ik] for all i,

e for all j such that j (mod k) # 0, f[j] = f[j — 1].

6/18

An 5(n + wT)-time Algorithm

¢ Partition the items by their weights
e f for each group is w-step concave for their weight w

7/18

An O(n + wT)-time Algorithm

¢ Partition the items by their weights

e f for each group is w-step concave for their weight w
e Algorithm:
1. Partition the items by their weights — O(n) time

2. Compute f for each group — O(n) time
3. Merge all f's one by one using convolution — O(wT) time

7/18

Convolution with Hint

Let I;,...,I, be the partition of I by item weight.
Our goal is f[T] rather than the whole function fr.

fr[T] = fr[ti] + - + fr,[tw] for some t1 4 ... + 1, = 1.

We can not know {t1, ..., 1} exactly.

Some hint on {ty,...,tw} may help to accelerate the
convolution.

8/18

A Proximity Result

* Assume that p;/wq; > p2/Wz = -+ = pn/Wn.

e letx' ={1,...,10,...,0} be the maximal prefix
solution. (greedily select the item with the highest
efficiency)

0 b n

larger index has lower efficiency

9/18

A Proximity Result

e Assume that p;/wy > pa/wa > -+ = pn/Wn.

e letx' ={1,...,10,...,0} be the maximal prefix
solution. (greedily select the item with the highest
efficiency)

Lemma [Eisenbrand & Weismantel '19][Polak et al. '21]
There is an optimal solution x* such that

> Ix— x| < 2w.

i€l

0 b n

larger index has lower efficiency

9/18

An O(n + w®) Algorithm

® There exists {gy,...,gw} such that

>t —gl < 2wl
* When computing fI1U---uI;. ® fIJH, it suffices to consider

their subsequences of length at most 4w?,
Each convolution needs O(w?) time. [Polak et al. ‘21]

* we can compute f1[T] in O(n + w?) time.

10/18

A Stronger Hint

e Previous hint:

>t - gl < 2wl

e It isimpossible that for any j € {1,...,w},
1) — gj| = ©(W?).
o There exists a subset D of {1,...,w} that |D| = O(w®?)

and
> It — g5l < Owh?).
jeb

11/18

An O(n + w®/2)-Time Algorithm

There exists a subset D of {1,...,w} that D = O(w®?)

and
> Ity —gjl < Owh?).
jeb

Only O(w®) out of the w convolutions require O(w?)
time for each.

The other convolutions require O(w!®) time for each.
The total running time is

O(n+wo? - w? +w-whd) = O(n+ w?3)

12/18

Intuition for the Stronger Hint

M H M L |
0 b n

larger index has lower efficiency

OPT tends to select
® alot of items in H,
e very few item inL.

13/18

Intuition for the Stronger Hint

M, H M L |
0 b n

larger index has lower efficiency

e If items in M; and M, has O(w®° logw) distinct weight,
then

* the total weight of items in H not selected by OPT is at
most O(w'?),

* the total weight of items in L that are selected by OPT
is at most O(w!®).

13/18

Additive Combinatorics

A Fundamental Result [Szemeredi & Vu '06]

For any subset S of {1,...,w} with |S| > O(W%°logw), the
subset sums of S contains an arithmetic progression of
length w.

14/18

Additive Combinatorics

A Fundamental Result [Szemeredi & Vu '06]

For any subset S of {1,...,w} with |S| > O(W%°logw), the
subset sums of S contains an arithmetic progression of
length w.

It was first used to tackle Subset Sum. [Galil & Margalit
'91] [Bringmann & Wellnitz '21]
Result in [Bringmann & Wellnitz '21](Informal)

If Sis dense and has no ©(1)-almost divisor, then there
exists Ay such that [A\x, Zx — Ax] C Sx.

14/18

Additive Combinatorics

Using additive combinatorics tools, we can obtain

Lemma

Let A and B be two subset of {1,...,w}. If

|A| > O(W2 logw) and E,.px > O(w'® logw), then there are
non-empty subsets A’ C A and B’ C B that

d ox=> x

XEA’ xeB’

larger index has lower efficiency

15/18

Further Improvement

* Using additive combinatorics result for multi-set.
e Partition into more groups (in terms of efficiency).

larger index and lower efficiency

16/18

Further Improvement

* Using additive combinatorics result for multi-set.
e Partition into more groups (in terms of efficiency).
 We partition into six groups and obtain O(n + w?*4).

0 b n

larger index and lower efficiency

16/18

Further Improvement

Using additive combinatorics result for multi-set.
Partition into more groups (in terms of efficiency).
We partition into six groups and obtain O(n + w?*#).
[Bringmann ‘23] and [Jin ‘23] partition into O(logn)
groups and obtain O(n + w?).

0 b n

larger index and lower efficiency

16/18

Other Results

e Bounded Knapsack: an O(N + w?) algorithm.
e Approximation for Knapsack: an O(n + ;)-Time FPTAS.

e Subset sum: an O(n + w'?) algorithm.

17/18

Thank youl

