Weakly Approximating Knapsack in
Subquadratic Time

Jiayi Lian
Joint work with Lin Chen, Yuchen Mao, and Guochuan Zhang

Zhejiang University

July 8, 2025
ICALP 2025

1/25

Knapsack

* n items with weights {w,}, and profits {p;};
 a knapsack with capacity ¢

* maximize total profit subject to the capacity constraint

max {szxz : Zwixi <t,z; € {0, 1}}
=1 =1

2/25

PTAS

e Asks for a subset S of items with

p(S) > OPT/(1+¢)
w(S) <t

e Can be done in O(n + (1)?) time

3/25

PTAS

e Asks for a subset S of items with

p(S) > OPT/(1+¢)
w(S) <t

e Can be done in O(n + (1)?) time

e No O((n + 1)27%)-time algorithm for any constant ¢ > 0,
under the (min, +)-convolution conjecture

3/25

Resource Augmentation

e Asks for a subset S of items with

p(S) > OPT
w(S) < (1+e)t

e Can be done in O(n + (1)?) time

* No O((n + 1)27%)-time algorithm for any constant § > 0,
under the (min, +)-convolution conjecture

4/25

Weak Approximation

e Asks for a subset S of items with

p(S) > OPT/(1+¢)
w(S) < (1+e)t

e Can it done in O(n + (1)2-%) time for some constant
9 >0?

5/25

Related Problems

e Subset Sum:
Standard approx: no O((n + 1)?7°)-time algorithm
Weak approx: solved in O(n + 1/¢) time

6/25

Related Problems

e Subset Sum:
Standard approx: no O((n + 1)?7°)-time algorithm
Weak approx: solved in O(n + 1/¢) time

* Unbounded Knapsack:

Standard approx: no O((n + 1)?7°)-time algorithm
Weak approx: solved in O(n + (1)) time

6/25

Related Problems

e Subset Sum:
Standard approx: no O((n + 1)?7°)-time algorithm
Weak approx: solved in O(n + 1/¢) time

* Unbounded Knapsack:
Standard approx: no O((n + 1)?7°)-time algorithm
Weak approx: solved in O(n + (1)) time

* Knapsack:

Standard approx: no O((n + 1)?7°)-time algorithm
Weak approx: ?

6/25

Related Problems

e Subset Sum:
Standard approx: no O((n + 1)?7°)-time algorithm
Weak approx: solved in O(n + 1/¢) time

* Unbounded Knapsack:
Standard approx: no O((n + 1)?7°)-time algorithm
Weak approx: solved in O(n + (1)) time

* Knapsack:

Standard approx: no O((n + 1)?7°)-time algorithm
Weak approx: ? solved in O(n + (1)7/*) time

6/25

Value Function

e Let I be a set of items.

* Define f; : R.y — R, as follows.

f;(z) = max {Zpizi : Zwizi <z, z; € {0, 1}}

el el

wl2 |3 @012345
3| 4 = (0|0|3|4a|a]|7

7/25

Value Function

e Let I be a set of items.

* Define f; : R.y — R, as follows.

f;(z) = max {Zpizi : Zwizi <z, z; € {0, 1}}

el el

* Weak approx Knapsack = Compute f” weak approx f;:

7/25

Framework for Value Function

Partitioning

11 12 I3 14
Computing

Merging W

8/25

Max-Plus Convolution

* Given f; and f;,

frun (@) = 1”f1‘?1>‘i{ﬁr1 (1) + fr, (@) t 2y + 2y = $}

* frur, = fr, ® f1,* (max, +)-convolution

7 012,345 0(1]2,3|4|5
EED 4 TR P

?2=max {1+, B+, ...}

9/25

Max-Plus Convolution

* frur, = f1, ® f1,+ (max, +)-convolution

® General Case: can be computed in O(n?) time
(min, +)-convolution conjecture: no O(n*°)-time algorithm

10/25

Max-Plus Convolution

* frur, = f1, ® f1,+ (max, +)-convolution

® General Case: can be computed in O(n?) time
(min, +)-convolution conjecture: no O(n*°)-time algorithm

e Bounded Monotone: can be computed in O(n3/2) time

10/25

Max-Plus Convolution

* frur, = f1, @ f1,* (max, +)-convolution

® General Case: can be computed in O(n?) time
(min, +)-convolution conjecture: no O(n*°)-time algorithm

e Bounded Monotone: can be computed in O(n3/2) time
e Given monotone functions f, and f,, a weak
approximation of f, & f, can be computed in O((1)3/2)
time

e We can partition items into several groups

10/25

The Reduced Problem

For some a > 1,

-w; € [11 2]

-p; € [172]
“t=6(L)

- absolute err = O(1)

When a > 1/£%/3, the solution size is small and it can be
tackled using color coding

The difficult case is when 1 < o < 1/£2/3

Compute the value function of this set

11/25

Value Function with Bounded Efficiency

* item efficiency = 2=

e If item efficiencies are same,
weak approx f; = weak approx sumset sum —> in O(1) time

12/25

Value Function with Bounded Efficiency

* item efficiency = £-

e If item efficiencies are same,
weak approx f; = weak approx sumset sum —> in O(1) time

e If item efficiencies are in [p,p + A], using 2D-FFT,
f1 can be approximated in O((1)2A) time.

12/25

Value Function with Bounded Efficiency

* item efficiency = £-

e If item efficiencies are same,
weak approx f; = weak approx sumset sum —> in O(1) time

e If item efficiencies are in [p,p + A], using 2D-FFT,
f1 can be approximated in O((1)2A) time.

o Item efficiencies are in [1/2,2] = still quadratic time

12/25

Items with Similar Efficiencies

® partition into groups

— A
§ \ * compute their value
9 — » function in time
2
4 — A ~ 1
5 otrya)
1/2

items

13/25

Items with Different Efficiencies

* use a proximity bound

efficiency

\)

1/

items

14/25

1/

efficiency

\)

Items with Different Efficiencies

High

items

* use a proximity bound
e partition into three parts

* only a few items from
Low part will contribute;

and only a few items from
High part will not
contribute

e allow a larger approx
factor

14/25

efficiency

—_
~
[\

General Case

items

15/25

General Case

® partition into groups of
fix size 7

items

Adua121442

N
~
i

15/25

—_
~

efficiency

[\

General Case
® partition into groups of
fix size 7

* A <1 (Good):
Compute directly

° A >1(Bad):
Use a larger factor

items

15/25

—_
~

efficiency

[\

General Case
® partition into groups of
fix size 7

* A <1 (Good):
Compute directly

° A >1(Bad):
Use a larger factor

items e In O(n + (1)1/%) time

15/25

Proximity Bound

decreasing efficiency

e Most items in H will be used

e Most items in L will not be used

16/25

Efficiency-Based Proximity

® Greedy Solution: add items until could not add

® Breaking item: the first item that the greedy solution
does not used

=P <w
Greedy . @
orT NN WA n é

decreasing efficiency

17/25

Efficiency-Based Proximity

Pyt A Pp
Greedy |

opT I i | 00 0 2
H- It

decreasing efficiency

e Weight: It — H™ < w,
e Efficiency: H- — I > A

° wH™) <L

18/25

Efficiency-Based Proximity

decreasing efficiency

o w(H) < Pumax < 2

>l

19/25

Efficiency-Based Proximity

>0 >[ro

19/25

G

V
il

V
3=

V

Dealing with Bad Groups

e

-
vV

=
o~

decreasing efficiency

20/25

Dealing with Bad Groups

H M L
~ —~ ~ ——
I
T T'T T n
by

decreasing efficiency

20/25

Dealing with Bad Groups

V
3=
V
il
V
3=
V

decreasing efficiency

e wH) <27
o w(M™T)<3x2r =067
e w(L™) <27

20/25

Dealing with Bad Groups

H M
1 1 1 1 1
>z > > >z >2
e —
0 T
bt

decreasing efficiency

f1@) = fu(ty) + far(tar) + fr(tn)

® ty>w(H)—2r
® { <67
° ¢, <27

20/25

Dealing with Groups

1) = futy) + far(tar) + fr(tn) ar=0(1)=¢ ==L
e fMafL: by <67, <27

f f

21/25

Dealing with Groups

1) = futy) + far(tar) + fr(tn)

o farfrity <61, t;, <27

f f

err=0(1)=¢ =1L
o fyity>w(H)—2T
! f

21/25

A Good Approximation for All Capacities

\
~
~
~
~
~
~

22/25

Theorem
There is a O(n + (1)11/%)-time weak approximation scheme
for Knapsack.

23/25

Theorem
There is a O(n + (1)11/%)-time weak approximation scheme
for Knapsack.

Can be improved to O(n + (1)7/4) by grouping the items in a
more careful way.

23/25

Future Work

e O(n + (1)%?) time?
e same as the Bounded Monotone (max,+) Convolution.
e O(n+ (w+p)>?) time for exact algorithms?

e under the (min, +)-convolution conjecture, there is no
O(n +w?%) (or O(n + p*7%)) -time algorithm

24/25

Thank you !

25/25

