Weakly Approximating Knapsack in Subquadratic Time

Jiayi Lian

Joint work with Lin Chen, Yuchen Mao, and Guochuan Zhang

Zhejiang University

July 8, 2025

ICALP 2025

Knapsack

- n items with weights $\{w_i\}_i$ and profits $\{p_i\}_i$
- ullet a knapsack with capacity t
- maximize total profit subject to the capacity constraint

$$\max\left\{\sum_{i=1}^n p_i x_i: \sum_{i=1}^n w_i x_i \leq t, x_i \in \{0,1\}\right\}$$

PTAS

Asks for a subset S of items with

$$p(S) \ge OPT/(1+\varepsilon)$$

 $w(S) \le t$

• Can be done in $\tilde{O}(n+(\frac{1}{\varepsilon})^2)$ time [Chen, Lian, Mao & Zhang '24][Mao '24]

PTAS

Asks for a subset S of items with

$$p(S) \ge OPT/(1+\varepsilon)$$

 $w(S) \le t$

- Can be done in $\tilde{O}(n+(\frac{1}{\varepsilon})^2)$ time [Chen, Lian, Mao & Zhang '24][Mao '24]
- No $O((n+\frac{1}{\varepsilon})^{2-\delta})$ -time algorithm for any constant $\delta>0$, under the (min, +)-convolution conjecture [Künnemann, Paturi & Schneider '17] [Cygan, Mucha, Węgrzycki & Włodarczyk '19]

Resource Augmentation

Asks for a subset S of items with

$$p(S) \ge OPT$$

 $w(S) \le (1+\varepsilon)t$

- \bullet Can be done in $\tilde{O}(n+(\frac{1}{\varepsilon})^2)$ time
- No $O((n+\frac{1}{\varepsilon})^{2-\delta})$ -time algorithm for any constant $\delta>0$, under the (min, +)-convolution conjecture

Weak Approximation

Asks for a subset S of items with

$$p(S) \ge OPT/(1+\varepsilon)$$

$$w(S) \le (1+\varepsilon)t$$

• Can it done in $\tilde{O}(n+(\frac{1}{\varepsilon})^{2-\delta})$ time for some constant $\delta>0$?

Subset Sum:

Standard approx: no $O((n+\frac{1}{\varepsilon})^{2-\delta})\text{-time}$ algorithm

Weak approx: solved in $\tilde{O}(n+1/\varepsilon)$ time

- Subset Sum: Standard approx: no $O((n+\frac{1}{\varepsilon})^{2-\delta})$ -time algorithm Weak approx: solved in $\tilde{O}(n+1/\varepsilon)$ time
- Unbounded Knapsack: Standard approx: no $O((n+\frac{1}{\varepsilon})^{2-\delta})$ -time algorithm Weak approx: solved in $\tilde{O}(n+(\frac{1}{\varepsilon})^{3/2})$ time

- Subset Sum: Standard approx: no $O((n+\frac{1}{\varepsilon})^{2-\delta})$ -time algorithm Weak approx: solved in $\tilde{O}(n+1/\varepsilon)$ time
- Unbounded Knapsack: Standard approx: no $O((n+\frac{1}{\varepsilon})^{2-\delta})$ -time algorithm Weak approx: solved in $\tilde{O}(n+(\frac{1}{\varepsilon})^{3/2})$ time
- Knapsack: Standard approx: no $O((n+\frac{1}{\varepsilon})^{2-\delta})$ -time algorithm Weak approx: ?

- Subset Sum: Standard approx: no $O((n+\frac{1}{\varepsilon})^{2-\delta})$ -time algorithm Weak approx: solved in $\tilde{O}(n+1/\varepsilon)$ time
- Unbounded Knapsack: Standard approx: no $O((n+\frac{1}{\varepsilon})^{2-\delta})$ -time algorithm Weak approx: solved in $\tilde{O}(n+(\frac{1}{\varepsilon})^{3/2})$ time
- Knapsack: Standard approx: no $O((n+\frac{1}{\varepsilon})^{2-\delta})$ -time algorithm Weak approx: ? solved in $\tilde{O}(n+(\frac{1}{\varepsilon})^{7/4})$ time

Value Function

- Let I be a set of items.
- Define $f_I: \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$ as follows.

$$f_I(x) = \max \left\{ \sum_{i \in I} p_i z_i : \sum_{i \in I} w_i z_i \leq x, z_i \in \{0,1\} \right\}$$

7	W	2	3	
ľ.	p	3	4	

0	1	2	3	4	5
0	0	3	4	4	7

Value Function

- Let I be a set of items.
- Define $f_I:\mathbb{R}_{>0}\to\mathbb{R}_{>0}$ as follows.

$$f_I(x) = \max \left\{ \sum_{i \in I} p_i z_i : \sum_{i \in I} w_i z_i \leq x, z_i \in \{0,1\} \right\}$$

• Weak approx Knapsack \Rightarrow Compute f' weak approx f_I :

Framework for Value Function

ullet Given f_{I_1} and f_{I_2}

$$f_{I_1 \cup I_2}(x) = \max \left\{ f_{I_1}(x_1) + f_{I_2}(x_2) : x_1 + x_2 = x \right\}$$

• $f_{I_1 \cup I_2} = f_{I_1} \oplus f_{I_2}$: (max, +)-convolution

$$? = \max \{ -1, -1, \dots \}$$

- $f_{I_1 \cup I_2} = f_{I_1} \oplus f_{I_2} \text{: (max, +)-convolution}$
- General Case: can be computed in $O(n^2)$ time (min, +)-convolution conjecture: no $O(n^{2-\delta})$ -time algorithm

- $f_{I_1 \cup I_2} = f_{I_1} \oplus f_{I_2} \text{: (max, +)-convolution}$
- General Case: can be computed in $O(n^2)$ time (min, +)-convolution conjecture: no $O(n^{2-\delta})$ -time algorithm
- Bounded Monotone: can be computed in $\widetilde{O}(n^{3/2})$ time [Chi, Duan, Xie & Zhang '22]

- $f_{I_1 \cup I_2} = f_{I_1} \oplus f_{I_2}$: (max, +)-convolution
- General Case: can be computed in $O(n^2)$ time (min, +)-convolution conjecture: no $O(n^{2-\delta})$ -time algorithm
- Bounded Monotone: can be computed in $\widetilde{O}(n^{3/2})$ time [Chi, Duan, Xie & Zhang '22]
 - Given monotone functions f_1 and f_2 , a weak approximation of $f_1\oplus f_2$ can be computed in $\tilde{O}((\frac{1}{\varepsilon})^{3/2})$ time
 - · We can partition items into several groups

The Reduced Problem

- For some $\alpha \geq 1$,
 - $-w_i \in [1, 2]$
 - $-p_i \in [1, 2]$
 - $-t = \Theta(\frac{1}{\alpha \varepsilon})$
 - absolute err = $O(\frac{1}{\alpha})$
- When $\alpha \geq 1/\varepsilon^{2/3}$, the solution size is small and it can be tackled using color coding
- The difficult case is when $1 < \alpha < 1/\varepsilon^{2/3}$
- Compute the value function of this set

Value Function with Bounded Efficiency

- item efficiency $= \frac{p_i}{w_i}$
- If item efficiencies are same, weak approx f_I = weak approx sumset sum \longrightarrow in $\widetilde{O}(\frac{1}{\varepsilon})$ time

Value Function with Bounded Efficiency

- item efficiency $= rac{p_i}{w_i}$
- If item efficiencies are same, weak approx f_I = weak approx sumset sum \longrightarrow in $\widetilde{O}(\frac{1}{\varepsilon})$ time
- If item efficiencies are in $[\rho,\rho+\Delta]$, using 2D-FFT, f_I can be approximated in $\tilde{O}((\frac{1}{\varepsilon})^2\Delta)$ time.

Value Function with Bounded Efficiency

- item efficiency $= rac{p_i}{w_i}$
- If item efficiencies are same, weak approx f_I = weak approx sumset sum \longrightarrow in $\widetilde{O}(\frac{1}{\varepsilon})$ time
- If item efficiencies are in $[\rho, \rho + \Delta]$, using 2D-FFT, f_I can be approximated in $\tilde{O}((\frac{1}{\varepsilon})^2\Delta)$ time.
 - Item efficiencies are in $[1/2, 2] \Rightarrow$ still quadratic time

Items with Similar Efficiencies

- partition into groups
- compute their value function in time

$$\tilde{O}((\frac{1}{\varepsilon})^2\sum \Delta_i)$$

Items with Different Efficiencies

• use a proximity bound

Items with Different Efficiencies

- use a proximity bound
- partition into three parts
- only a few items from Low part will contribute;
 and only a few items from High part will not contribute
- allow a larger approx factor

• partition into groups of fix size au

- partition into groups of fix size τ
- $\Delta \leq \frac{1}{\tau}$ (Good): Compute directly
- $\Delta \geq \frac{1}{ au}$ (Bad): Use a larger factor

- partition into groups of fix size τ
- $\Delta \leq \frac{1}{\tau}$ (Good): Compute directly
- $\Delta \geq \frac{1}{\tau}$ (Bad): Use a larger factor
- In $\tilde{O}(n+(\frac{1}{\varepsilon})^{11/6})$ time

Proximity Bound

- Most items in H will be used
- Most items in L will not be used

- Greedy Solution: add items until could not add
- Breaking item: the first item that the greedy solution does not used

- $\bullet \ \ \text{Weight:} \ I^+ H^- \leq w_b$
- Efficiency: $H^- I^+ \ge \Delta$
- $w(H^-) \leq \frac{p_b}{\Delta}$

•
$$w(H^-) \le \frac{p_{\max}}{\Delta} \le \frac{2}{\Delta}$$

•
$$w(H^-) \le \frac{p_{\max}}{\Delta} \le \frac{2}{\Delta}$$

•
$$w(L^+) \le \frac{p_{\text{max}}}{\Delta} \le \frac{2}{\Delta}$$

- $w(H^{-}) \le 2\tau$
- $w(M^+) \le 3 \times 2\tau = 6\tau$
- $w(L^+) \le 2\tau$

$$f_I(t) = f_H(t_H) + f_M(t_M) + f_L(t_L) \label{eq:fI}$$

- $t_H \ge w(H) 2\tau$
- $t_M \leq 6\tau$
- $t_L \le 2\tau$

$$f_I(t) = f_H(t_H) + f_M(t_M) + f_L(t_L)$$
 $\operatorname{err} = O(\frac{1}{\alpha}) \Rightarrow \varepsilon' = \frac{1}{\alpha \tau}$

• $f_M, f_L \colon t_M \leq 6\tau$, $t_L \leq 2\tau$

$$f_I(t) = f_H(t_H) + f_M(t_M) + f_L(t_L)$$

- f_M, f_L : $t_M \le 6\tau$, $t_L \le 2\tau$
- $f' \qquad f$ $\leq \varepsilon' \cdot x$

$$\operatorname{err} = O(\frac{1}{\alpha}) \Rightarrow \varepsilon' = \frac{1}{\alpha \tau}$$

• $f_H: t_H \ge w(H) - 2\tau$

A Good Approximation for All Capacities

Theorem

There is a $\tilde{O}(n+(\frac{1}{\varepsilon})^{11/6})\text{-time}$ weak approximation scheme for Knapsack.

Theorem

There is a $\tilde{O}(n+(\frac{1}{\varepsilon})^{11/6})\text{-time}$ weak approximation scheme for Knapsack.

Can be improved to $\tilde{O}(n+(\frac{1}{\varepsilon})^{7/4})$ by grouping the items in a more careful way.

Future Work

- $\tilde{O}(n+(\frac{1}{arepsilon})^{3/2})$ time?
 - same as the Bounded Monotone (max,+) Convolution.
- $\tilde{O}(n+(w+p)^{2-\delta})$ time for exact algorithms?
 - under the (min, +)-convolution conjecture, there is no $O(n+w^{2-\delta})$ (or $O(n+p^{2-\delta})$) -time algorithm

Thank you!