
Weakly Approximating Knapsack in
Subquadratic Time

Jiayi Lian

Joint work with Lin Chen, Yuchen Mao, and Guochuan Zhang

Zhejiang University

July 8, 2025

ICALP 2025

1 / 25



Knapsack

• 𝑛 items with weights {𝑤𝑖}𝑖 and profits {𝑝𝑖}𝑖

• a knapsack with capacity 𝑡

• maximize total profit subject to the capacity constraint

max {
𝑛

∑
𝑖=1

𝑝𝑖𝑥𝑖 ∶
𝑛

∑
𝑖=1

𝑤𝑖𝑥𝑖 ≤ 𝑡, 𝑥𝑖 ∈ {0, 1}}
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PTAS

• Asks for a subset 𝑆 of items with

𝑝(𝑆) ≥ 𝑂𝑃 𝑇 /(1 + 𝜀)
𝑤(𝑆) ≤ 𝑡

• Can be done in 𝑂̃(𝑛 + (1
𝜀 )2) time

[Chen, Lian, Mao & Zhang ‛24][Mao ‛24]

• No 𝑂((𝑛 + 1
𝜀 )2−𝛿)-time algorithm for any constant 𝛿 > 0,

under the (min, +)-convolution conjecture
[Künnemann, Paturi & Schneider ‛17]
[Cygan, Mucha, Węgrzycki & Włodarczyk ‛19]
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Resource Augmentation

• Asks for a subset 𝑆 of items with

𝑝(𝑆) ≥ 𝑂𝑃𝑇
𝑤(𝑆) ≤ (1 + 𝜀)𝑡

• Can be done in 𝑂̃(𝑛 + (1
𝜀 )2) time

• No 𝑂((𝑛 + 1
𝜀 )2−𝛿)-time algorithm for any constant 𝛿 > 0,

under the (min, +)-convolution conjecture
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Weak Approximation

• Asks for a subset 𝑆 of items with

𝑝(𝑆) ≥ 𝑂𝑃 𝑇 /(1 + 𝜀)
𝑤(𝑆) ≤ (1 + 𝜀)𝑡

• Can it done in 𝑂̃(𝑛 + (1
𝜀 )2−𝛿) time for some constant

𝛿 > 0?
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Related Problems

• Subset Sum:
Standard approx: no 𝑂((𝑛 + 1

𝜀 )2−𝛿)-time algorithm
Weak approx: solved in 𝑂̃(𝑛 + 1/𝜀) time

• Unbounded Knapsack:
Standard approx: no 𝑂((𝑛 + 1

𝜀 )2−𝛿)-time algorithm
Weak approx: solved in 𝑂̃(𝑛 + (1

𝜀 )3/2) time

• Knapsack:
Standard approx: no 𝑂((𝑛 + 1

𝜀 )2−𝛿)-time algorithm
Weak approx: ?

solved in 𝑂̃(𝑛 + (1
𝜀 )7/4) time
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Value Function

• Let 𝐼 be a set of items.

• Define 𝑓𝐼 ∶ ℝ≥0 → ℝ≥0 as follows.

𝑓𝐼(𝑥) = max {∑
𝑖∈𝐼

𝑝𝑖𝑧𝑖 ∶ ∑
𝑖∈𝐼

𝑤𝑖𝑧𝑖 ≤ 𝑥, 𝑧𝑖 ∈ {0, 1}}
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𝑓𝐼(𝑥) = max {∑
𝑖∈𝐼

𝑝𝑖𝑧𝑖 ∶ ∑
𝑖∈𝐼

𝑤𝑖𝑧𝑖 ≤ 𝑥, 𝑧𝑖 ∈ {0, 1}}

• Weak approx Knapsack ⇒ Compute 𝑓 ′ weak approx 𝑓𝐼:
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Framework for Value Function
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Max-Plus Convolution

• Given 𝑓𝐼1
and 𝑓𝐼2

𝑓𝐼1∪𝐼2
(𝑥) = max {𝑓𝐼1

(𝑥1) + 𝑓𝐼2
(𝑥2) ∶ 𝑥1 + 𝑥2 = 𝑥}

• 𝑓𝐼1∪𝐼2
= 𝑓𝐼1

⊕ 𝑓𝐼2
: (max, +)-convolution
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Max-Plus Convolution

• 𝑓𝐼1∪𝐼2
= 𝑓𝐼1

⊕ 𝑓𝐼2
: (max, +)-convolution

• General Case: can be computed in 𝑂(𝑛2) time
(min, +)-convolution conjecture: no 𝑂(𝑛2−𝛿)-time algorithm

• Bounded Monotone: can be computed in 𝑂(𝑛3/2) time
[Chi, Duan, Xie & Zhang ‛22]

• Given monotone functions 𝑓1 and 𝑓2, a weak
approximation of 𝑓1 ⊕ 𝑓2 can be computed in 𝑂̃(( 1

𝜀 )3/2)
time

• We can partition items into several groups
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The Reduced Problem

• For some 𝛼 ≥ 1,
- 𝑤𝑖 ∈ [1, 2]
- 𝑝𝑖 ∈ [1, 2]
- 𝑡 = Θ( 1

𝛼𝜀)
- absolute err = 𝑂( 1

𝛼)

• When 𝛼 ≥ 1/𝜀2/3, the solution size is small and it can be
tackled using color coding

• The difficult case is when 1 ≤ 𝛼 ≤ 1/𝜀2/3

• Compute the value function of this set
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Value Function with Bounded Efficiency

• item efficiency = 𝑝𝑖
𝑤𝑖

• If item efficiencies are same,
weak approx 𝑓𝐼 = weak approx sumset sum —> in 𝑂( 1

𝜀 ) time

• If item efficiencies are in [𝜌, 𝜌 + Δ], using 2D-FFT,
𝑓𝐼 can be approximated in 𝑂̃((1

𝜀 )2Δ) time.

• Item efficiencies are in [1/2, 2] ⇒ still quadratic time
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Items with Similar Efficiencies

items

ef
fi
ci
en

cy

1/2

2

}Δ1

}Δ2

}Δ3

• partition into groups

• compute their value
function in time

𝑂̃((1
𝜀 )2 ∑ Δ𝑖)
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Items with Different Efficiencies

items

ef
fi
ci
en

cy

1/2

2

Low High

• use a proximity bound

• partition into three parts

• only a few items from
Low part will contribute;

and only a few items from
High part will not
contribute

• allow a larger approx
factor
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General Case

items

ef
fi
ci
en

cy

1/2

2

• partition into groups of
fix size 𝜏

• Δ ≤ 1
𝜏 (Good):

Compute directly

• Δ ≥ 1
𝜏 (Bad):

Use a larger factor

• In 𝑂̃(𝑛 + (1
𝜀 )11/6) time
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Proximity Bound

0 𝑛
𝐻 𝐿

decreasing efficiency

• Most items in 𝐻 will be used

• Most items in 𝐿 will not be used
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Efficiency-Based Proximity

• Greedy Solution: add items until could not add

• Breaking item: the first item that the greedy solution
does not used
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Efficiency-Based Proximity

• Weight: 𝐼+ − 𝐻− ≤ 𝑤𝑏

• Efficiency: 𝐻− − 𝐼+ ≥ Δ
• 𝑤(𝐻−) ≤ 𝑝𝑏

Δ
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Efficiency-Based Proximity

0 𝑛
𝐻 𝐿

𝑏𝑡

𝜌𝑏𝜌𝑏 + Δ

𝜌𝑏 − Δ

decreasing efficiency

• 𝑤(𝐻−) ≤ 𝑝max
Δ ≤ 2

Δ

• 𝑤(𝐿+) ≤ 𝑝max
Δ ≤ 2

Δ
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Efficiency-Based Proximity

0 𝑛
𝐻 𝐿

𝑏𝑡

𝜌𝑏𝜌𝑏 + Δ 𝜌𝑏 − Δ

decreasing efficiency

• 𝑤(𝐻−) ≤ 𝑝max
Δ ≤ 2

Δ

• 𝑤(𝐿+) ≤ 𝑝max
Δ ≤ 2

Δ

19 /25



Dealing with Bad Groups

0 𝑛

decreasing efficiency

𝜏 𝜏 ⋯ 𝜏 𝜏 𝜏 ⋯
> 1

𝜏 > 1
𝜏 > 1

𝜏 > 1
𝜏 > 1

𝜏

𝑏𝑡

}𝐻 }𝑀

}

𝐿
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𝜏 > 1
𝜏 > 1

𝜏 > 1
𝜏 > 1

𝜏

𝑏𝑡

}𝐻 }𝑀

}

𝐿

• 𝑤(𝐻−) ≤ 2𝜏
• 𝑤(𝑀+) ≤ 3 × 2𝜏 = 6𝜏
• 𝑤(𝐿+) ≤ 2𝜏
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Dealing with Bad Groups

0 𝑛

decreasing efficiency

𝜏 𝜏 ⋯ 𝜏 𝜏 𝜏 ⋯
> 1

𝜏 > 1
𝜏 > 1

𝜏 > 1
𝜏 > 1

𝜏

𝑏𝑡

}𝐻 }𝑀

}

𝐿

𝑓𝐼(𝑡) = 𝑓𝐻(𝑡𝐻) + 𝑓𝑀(𝑡𝑀) + 𝑓𝐿(𝑡𝐿)
• 𝑡𝐻 ≥ 𝑤(𝐻) − 2𝜏
• 𝑡𝑀 ≤ 6𝜏
• 𝑡𝐿 ≤ 2𝜏
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Dealing with Groups

𝑓𝐼(𝑡) = 𝑓𝐻(𝑡𝐻) + 𝑓𝑀(𝑡𝑀) + 𝑓𝐿(𝑡𝐿) err = 𝑂( 1
𝛼) ⇒ 𝜀′ = 1

𝛼𝜏

• 𝑓𝑀 , 𝑓𝐿: 𝑡𝑀 ≤ 6𝜏 , 𝑡𝐿 ≤ 2𝜏

𝑓𝑓 ′

≤ 𝜀′ ⋅ 𝑥}

• 𝑓𝐻: 𝑡𝐻 ≥ 𝑤(𝐻) − 2𝜏

𝑓𝑓 ′

≤ 𝜀′(𝑤(𝐻) − 𝑥)

}
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Dealing with Groups
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A Good Approximation for All Capacities

𝑓

̃𝑓
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Theorem
There is a 𝑂̃(𝑛 + (1

𝜀 )11/6)-time weak approximation scheme
for Knapsack.

Can be improved to 𝑂̃(𝑛 + (1
𝜀 )7/4) by grouping the items in a

more careful way.
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Future Work

• 𝑂̃(𝑛 + (1
𝜀 )3/2) time?

• same as the Bounded Monotone (max,+) Convolution.

• 𝑂̃(𝑛 + (𝑤 + 𝑝)2−𝛿) time for exact algorithms?

• under the (min, +)-convolution conjecture, there is no
𝑂(𝑛 + 𝑤2−𝛿) (or 𝑂(𝑛 + 𝑝2−𝛿) ) -time algorithm
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Thank you !
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